17 research outputs found

    Exhaled Breath Condensate (EBC) for SARS-CoV-2 diagnosis still an open debate

    Get PDF
    : The real-time PCR (RT-PCR) on nasopharyngeal swabs (NPS) is the gold standard for the diagnosis of SARS-CoV-2. The exhaled breath condensate (EBC) is used to perform collection of biological fluid condensed in a refrigerated device from deep airways' exhaled air. We aimed to verify the presence of SARS-CoV-2 virus in the EBC from patients with confirmed SARS-CoV-2 infection by RT-PCR, and to determine if the EBC may represent a valid alternative to the NPS. Methods: Seventeen consecutive patients admitted to the Emergency Department of the Policlinico were enrolled in the present study with RT-PCR, clinical and radiological evidence of SARS-CoV-2. Within 24 hours from the NPS collection the EBC collection was performed on SARS-CoV-2 positive patients. Informed written consent was gathered and the Ethic Committee approved the study. Results: The mean age of patients was 60 years (24-92) and 64.7% (11/17) were male. Patient n. 9 and n.17 died. All NPS resulted positive for SARS-CoV-2 at RT-PCR. RT-PCR on EBC resulted negative for all but one patients (patient n.12). Conclusion: In this study we did not find any correlation between positive NPS and the EBC in all but one patients enrolled. Based on these data which greatly differ from previous reports on the topic, this study opens several questions related to small differences in the complex process of EBC collection and how EBC could be really standardized for the diagnosis of SARS-CoV-2 infection. Further studies will be warranted to deepen this topic

    Sphingosine 1-phosphate receptor 1 is required for MMP-2 function in bone marrow mesenchymal stromal cells: implications for cytoskeleton assembly and proliferation

    Get PDF
    Bone marrow-derived mesenchymal stromal cell- (BM-MSC-) based therapy is a promising option for regenerative medicine. An important role in the control of the processes influencing the BM-MSC therapeutic efficacy, namely, extracellular matrix remodelling and proliferation and secretion ability, is played by matrix metalloproteinase- (MMP-) 2. Therefore, the identification of paracrine/autocrine regulators of MMP-2 function may be of great relevance for improving BM-MSC therapeutic potential. We recently reported that BM-MSCs release the bioactive lipid sphingosine 1-phosphate (S1P) and, here, we demonstrated an impairment of MMP-2 expression/release when the S1P receptor subtype S1PR1 is blocked. Notably, active S1PR1/MMP-2 signalling is required for F-actin structure assembly (lamellipodia, microspikes, and stress fibers) and, in turn, cell proliferation. Moreover, in experimental conditions resembling the damaged/regenerating tissue microenvironment (hypoxia), S1P/S1PR1 system is also required for HIF-1α expression and vinculin reduction. Our findings demonstrate for the first time the trophic role of S1P/S1PR1 signalling in maintaining BM-MSCs' ability to modulate MMP-2 function, necessary for cytoskeleton reorganization and cell proliferation in both normoxia and hypoxia. Altogether, these data provide new perspectives for considering S1P/S1PR1 signalling a pharmacological target to preserve BM-MSC properties and to potentiate their beneficial potential in tissue repair

    Modulation of MMP-2 function in bone marrow mesenchymal stromal cells requires sphingosine 1-phopsphate receptor 1 mediated signaling: implications for cytoskeletal assembly and proliferation

    Get PDF
    Bone-marrow-derived mesenchymal stromal cells (BM-MSCs)–based therapy represents a promising option in the field of regenerative medicine. Their therapeutic potential is mainly dependent on paracrine secretion, proliferation and ECM remodeling abilities whose modulation involves Matrix Metalloproteinase (MMP)-2 functionality. Thus, the identification of paracrine/autocrine factors regulating MMP-2 expression/activity may be of great biological relevance for potentiating BM-MSC theraputic efficacy. Our research group has demonstrated that BM-MSCs release the bioactive lipid sphingosine-1-phosphate (S1P). Here we demonstrated : i) the requirement for BM-MSC of S1P production to synthesize functional gelatinases; ii) an impairment of gelatinolytic activity and MMP-2 expression/release when the S1P receptor subtype 1 (S1PR1) is blocked. Notably, in these experimental conditions BM-MSCs did not exhibit the formation of plasmamembrane-associated F-actin structures (lamellipodia, filopodia, microspikes) and, in turn, showed a reduction of the proliferation rate. Moreover, S1P1-mediated signaling is required for HIF-1alpha expression and MMP-2 expression/activity, reduction of vinculin expression and stress fiber formation and proliferation in hypoxia, an experimental condition mimicking the injured/regenerating tissue microenvironment. In conclusion, our findings, demonstrating the trophic role exerted by the autocrine S1P/S1PR1 signaling in maintaining BM-MSC ability to modulate MMP-2 function, required for ECM remodeling, cytoskeleton assembly and cell proliferation may provide perspectives for considering S1P/S1PR1 as a pharmacological target to preserve BM-MSCs properties and improve their efficacy in tissue repair

    Hip involvement in patients with calcium pyrophosphate deposition disease: potential and limits of musculoskeletal ultrasound

    No full text
    OBJECTIVES: To preliminarily explore the diagnostic potential of ultrasound (US) in detecting calcium pyrophosphate crystal (CPP) deposits at the hip joint in a cohort of patients with calcium pyrophosphate deposition disease (CPPD) which were previously evaluated by conventional radiography (CR); to assess the sensitivity and specificity as well as the agreement between US and CR in the evaluation of hip CPP crystal deposits. DESIGN: Fifty consecutive patients with "definite" CPPD and 40 age/sex/body mass index-matched disease controls who had undergone hip CR within the previous six months were enrolled. Bilateral hip US examination was carried out by one of the authors (A.D.M) to assess the presence of CCP crystal deposits at the acetabular labrum fibrocartilage and at femoral head's hyaline cartilage. Two independent radiologists evaluated the presence of hip CPP crystal deposits on CR in both groups. RESULTS: US findings indicative of CPP crystal deposits were found in at least one hip in 45 out of 50 (90.0%) patients with CPPD, in 73 out of 100 (73.0%) hips. CPP crystal deposits were more frequently found at the acetabular labrum fibrocartilage than at femoral head's hyaline cartilage (72% and 17% of the hips in CPPD patients, respectively). US and CR sensitivity was 90% and 86% whereas US and CR specificity was 85% and 90%, respectively. Total agreement between the US and CR findings was 77.8%. CONCLUSIONS: Our results provide new evidence supporting US as a first-line, sensitive, safe and reliable imaging technique in detecting CPP crystal deposits at hip level

    Local neurotoxicity and myotoxicity evaluation of cyclodextrin complexes of bupivacaine and ropivacaine

    No full text
    Bupivacaine (BVC) and ropivacaine (RVC) are local anesthetics widely used in surgical procedures. In previous studies, inclusion complexes of BVC or RVC in hydroxypropyl-beta-cyclodextrin (HP-beta-CD) increased differential nervous blockade, compared to the plain anesthetic solutions. In this study we evaluated the local neural and muscular toxicity of these new formulations containing 0.5% BVC or RVC complexed with HP-beta-CD (BVCHP-beta-CD and RVCHP-beta-CD). Schwann cell viability was assessed by determination of mitochondrial dehydrogenese activity, and histopathological evaluation of the rat sciatic nerve was used to identify local neurotoxic effects (48 hours and 7 days after the treatments). Evaluations of serum creatine kinase levels and the histopathology of rat gastrocnemius muscle (48 hours after treatment) were also performed. Schwann cell toxicity evaluations revealed no significant differences between complexed and plain local anesthetic formulations. However, use of the complexed local anesthetics reduced serum creatine kinase levels 5.5-fold, relative to the plain formulations. The differences were significant at P < 0.05 (BVC) and P < 0.01 (RVC). The histopathological muscle evaluation showed that differences between groups treated with local anesthetics (BVC or RVC) and their respective complexed formulations (BVCHP-beta-CD or RVCHP-beta-CD) were significant (P < 0.05). We concluded that the new formulations presented a lower myotoxicity and a similar cytotoxic effect when compared to plain local anesthetic solutions11551234124

    Pharmacological and local toxicity studies of a liposomal formulation for the novel local anaesthetic ropivacaine

    No full text
    This study reports an investigation of the pharmacological activity, cytotoxicity, and local effects of a liposomal formulation of the novel local anaesthetic ropivacaine (RVC) compared with its plain solution. RVC was encapsulated into large unilamellar vesicles (LUVs) composed of egg phosphatidylcholine, cholesterol and a-tocopherol (4:3:0.07, mole %). Particle size, partition coefficient determination and in-vitro release studies were used to characterize the encapsulation process. Cytotoxicity was evaluated by the tetrazolium reduction test using sciatic nerve Schwann cells in culture. Local anaesthetic activity was assessed by mouse sciatic and rat infraorbital nerve blockades. Histological analysis was performed to verify the myotoxic effects evoked by RVC formulations. Plain (RVCPLAIN) and liposomal RVC (RVCLUV) samples were tested at 0.125%, 0.25% and 0.5% concentrations. Vesicle size distribution showed liposomal populations of 370 and 130 nm (85 and 15%, respectively), without changes after RVC encapsulation. The partition coefficient value was 132 26 and in-vitro release assays revealed a decrease in RVC release rate (1.5 fold, P < 0.001) from liposomes. RVCLUV presented reduced cytotoxicity (P < 0.001) when compared with RVCPLAIN Treatment with RVCLUV increased the duration (P < 0.001) and intensity of the analgesic effects either on sciatic nerve blockade (1.4-1.6 fold) and infraorbital nerve blockade tests (1.5 fold), in relation to RVCPLAIN. Regarding histological analysis, no morphological tissue changes were detected in the area of injection and sparse inflammatory cells were observed in only one of the animals treated with RVCPLAIN or RVCLUV at 0.5%. Despite the differences between these preclinical studies and clinical conditions, we suggest RVCLUV as a potential new formulation, since RVC is a new and safe local anaesthetic agent.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    corecore