17 research outputs found

    Contrasting Daily and Seasonal Activity and Movement of Sympatric Elk and Cattle

    No full text
    Elk (Cervus elaphus L.) and cattle (Bos taurus L.) co-occur on rangelands throughout western North America. Literature regarding range relations between elk and cattle, however, is contradictory, describing interspecific competition in some cases and complementary or facilitative relations in others. A better understanding of how sympatric elk and cattle behave at fine spatiotemporal scales is needed to properly allocate resources for these species. We used intensively sampled Global Positioning System (GPS) tracking data (1-sec intervals) to classify elk and cattle behavior and investigate their activity and movement strategies in the Blue Mountains of northeastern Oregon, United States, during summer and fall 2007. An ensemble classification approach was used to identify stationary, foraging, and walking behavior classes within the GPS datasets of mature beef and captive elk cows grazing in forested pastures during two randomized experiments, one in summer and the other fall. During summer, elk traveled farther per day, had larger walking budgets, exhibited more and longer walking bouts, and had higher walking velocities than beef cows. Cattle tended to emphasize intensive foraging over extensive movement and thus displayed larger foraging budgets and longer foraging bouts than elk. Site-by-species interactions, however, were detected for some foraging responses. During fall, when forage quality was limiting, elk exhibited a more foraging-centric mobility strategy while cattle emphasized an energy conservation strategy. These differing movement and energetic strategies tended to support the concept that elk and cattle occupy differing behavioral niches. Extensive foraging by elk and intensive foraging by cattle during summer correspond well with behaviors expected for elk searching out forbs in graminoid-dominated habitats and cattle foraging intensively on graminoids. Behaviors exhibited in the fall were consistent with elk continuing to exercise more selectivity among the available forage than cattle. These differing strategies, consequently, would moderate the potential for direct interspecific competition during summer and fall. © Published by Elsevier Inc. on behalf of The Society for Range Management.The Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information

    Ecosystem water availability in juniper versus sagebrush snow-dominated rangelands

    Get PDF
    Western Juniper (Juniperus occidentalis Hook.) has greatly expanded in the past 150+years and now dominates over 3.6 million ha of rangeland in the Intermountain Western United States. The impacts of juniper encroachment on critical ecohydrological relationships among snowdistribution, water budgets, plant community transitions, and habitat requirements for wildlife, such as the greater sage grouse (Centrocercus urophasianus), remain poorly understood. The goal of this study is to better understand how juniper encroachment affects water availability for ecohydrologic processes and associatedwildlife habitat in snow-dominated sagebrush (Artemisia spp.) steppe ecosystems. A 6-yr combined measurement and modeling study is conducted to explore differences in snow distribution, water availability, and annual water balances between juniper-dominated and sagebrushdominated catchments. Although there is large interannual variability in both measured weather data and modeled hydrologic fluxes during the study, results indicate that juniper-dominated catchments have greater peak accumulations of snow water equivalent, earlier snow melt, and less streamflow relative to sagebrushdominated catchments. Water delivery is delayed by an average of 9 days in the sagebrush-dominated scenario comparedwith the juniper-dominated scenario as a result of increasedwater storage in snow drifts. The delayed water input to sagebrush-dominated ecosystems in typical water years has wide-ranging implications for available surface water, soil water, and vegetation dynamics associated with wildlife habitat for sagebrush obligates such as sage grouse. Results from this study imply that the retention of high-elevation, sagebrush-dominated landscapes may become crucial for sage grouse habitat management if mid- and low-elevation precipitation continues to transition from snow to rain dominated.The Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information

    Use of a shrub (Medicago arborea) to control water erosion on steep slopes

    No full text
    5 páginas, 6 figuras, 2 tablas.The effect of Medicago arborea on erosion on a burnt area was studied in experimental plots near Valencia, Spain, between 1989 and 1992. Its growth and development was studied, and its effect was compared with the natural vegetation (matorral) and bare soil. Medicago decreased soil loss by 41.7% and runoff by 25.7% compared with bare soil. However, under natural vegetation soil loss was 27.5% less than under Medicago.We thank E. Barrachina, V. García, Mª.D. Rius and I. Vargas, personnel of the Desertification Department (IATA-CSIC, Valencia), for help with analysis. EEC project N° EV4V-0112-QAM) provided the financial support.Peer reviewe
    corecore