67 research outputs found

    Modelling microglial function with induced pluripotent stem cells: an update

    Get PDF
    It is becoming increasingly apparent that microglia, the immune cells of the CNS, and their peripheral counterparts, macrophages, have a major role in normal physiology and pathology. Recent technological advances in the production of particular cell types from induced pluripotent stem cells have led to an interest in applying this methodology to the production of microglia. Here, we discuss recent advances in this area and describe how they will aid our future understanding of microglia

    A locked immunometabolic switch underlies TREM2 R47H loss of function in human iPSC-derived microglia

    Get PDF
    Lossā€ofā€function genetic variants of triggering receptor expressed on myeloid cells 2 (TREM2) are linked with an enhanced risk of developing dementias. Microglia, the resident immune cell of the brain, express TREM2, and microglial responses are implicated in dementia pathways. In a normal surveillance state, microglia use oxidative phosphorylation for their energy supply, but rely on the ability to undergo a metabolic switch to glycolysis to allow them to perform rapid plastic responses. We investigated the role of TREM2 on the microglial metabolic function in human patient iPSCā€derived microglia expressing loss of function variants in TREM2. We show that these TREM2 variant iPSCā€microglia, including the Alzheimer's disease R47H risk variant, exhibit significant metabolic deficits including a reduced mitochondrial respiratory capacity and an inability to perform a glycolytic immunometabolic switch. We determined that dysregulated PPARĪ³/p38MAPK signaling underlies the observed phenotypic deficits in TREM2 variants and that activation of these pathways can ameliorate the metabolic deficit in these cells and consequently rescue critical microglial cellular function such as Ī²ā€Amyloid phagocytosis. These findings have ramifications for microglial focussedā€treatments in AD

    The influence of the R47H triggering receptor expressed on myeloid cells 2 variant on microglial exosome profiles

    Get PDF
    Variants in the triggering receptor expressed on myeloid cells 2 gene are linked with an increased risk of dementia, in particular the R47H^{het} triggering receptor expressed on myeloid cells 2 variant is linked to late-onset Alzheimerā€™s disease. Using human induced pluripotent stem cells-derived microglia, we assessed whether variations in the dynamics of exosome secretion, including their components, from these cells might underlie some of this risk. We found exosome size was not altered between common variant controls and R47H^{het} variants, but the amount and constitution of exosomes secreted were different. Exosome quantities were rescued by incubation with an ATP donor or with lipids via a phosphatidylserine triggering receptor expressed on myeloid cells 2 ligand. Following a lipopolysaccharide or phagocytic cell stimulus, exosomes from common variant and R47H^{heht} microglia were found to contain cytokines, chemokines, APOE and triggering receptor expressed on myeloid cells 2. Differences were observed in the expression of CCL22, IL-1Ī² and triggering receptor expressed on myeloid cells 2 between common variant and R47H^{het} derived exosomes. Furthermore unlike common variant-derived exosomes, R47H^{het} exosomes contained additional proteins linked to negative regulation of transcription and metabolic processes. Subsequent addition of exosomes to stressed neurones showed R47H^{het}derived exosomes to be less protective. These data have ramifications for the responses of microglia in Alzheimerā€™s disease and may point to further targets for therapeutic intervention

    Microglialļ»æ signalling pathway deficits associated with the patient derived R47H TREM2 variants linked to AD indicate inability to activate inflammasome

    Get PDF
    The R47H variant of the microglial membrane receptor TREM2 is linked to increased risk of late onset Alzheimer's disease. Human induced pluripotent stem cell derived microglia (iPS-Mg) from patient iPSC lines expressing the AD-linked R47Hhet TREM2 variant, common variant (Cv) or an R47Hhom CRISPR edited line and its isogeneic control, demonstrated that R47H-expressing iPS-Mg expressed a deficit in signal transduction in response to the TREM2 endogenous ligand phosphatidylserine with reduced pSYK-pERK1/2 signalling and a reduced NLRP3 inflammasome response, (including ASC speck formation, Caspase-1 activation and IL-1beta secretion). Apoptotic cell phagocytosis and soluble TREM2 shedding were unaltered, suggesting a disjoint between these pathways and the signalling cascades downstream of TREM2 in R47H-expressing iPS-Mg, whilst metabolic deficits in glycolytic capacity and maximum respiration were reversed when R47H expressing iPS-Mg were exposed to PS+ expressing cells. These findings suggest that R47H-expressing microglia are unable to respond fully to cell damage signals such as phosphatidylserine, which may contribute to the progression of neurodegeneration in late-onset AD

    Differential stimulation of pluripotent stem cell-derived human microglia leads to exosomal proteomic changes affecting neurons

    Get PDF
    Microglial exosomes are an emerging communication pathway, implicated in fulfilling homeostatic microglial functions and transmitting neurodegenerative signals. Gene variants of triggering receptor expressed on myeloid cells-2 (TREM2) are associated with an increased risk of developing dementia. We investigated the influence of the TREM2 Alzheimerā€™s disease risk variant, R47Hhet, on the microglial exosomal proteome consisting of 3019 proteins secreted from human iPS-derived microglia (iPS-Mg). Exosomal protein content changed according to how the iPS-Mg were stimulated. Thus lipopolysaccharide (LPS) induced microglial exosomes to contain more inflammatory signals, whilst stimulation with the TREM2 ligand phosphatidylserine (PS+) increased metabolic signals within the microglial exosomes. We tested the effect of these exosomes on neurons and found that the exosomal protein changes were functionally relevant and influenced downstream functions in both neurons and microglia. Exosomes from R47Hhet iPS-Mg contained disease-associated microglial (DAM) signature proteins and were less able to promote the outgrowth of neuronal processes and increase mitochondrial metabolism in neurons compared with exosomes from the common TREM2 variant iPS-Mg. Taken together, these data highlight the importance of microglial exosomes in fulfilling microglial functions. Additionally, variations in the exosomal proteome influenced by the R47Hhet TREM2 variant may underlie the increased risk of Alzheimerā€™s disease associated with this variant

    Abrogation of LRRK2 dependent Rab10 phosphorylation with TLR4 activation and alterations in evoked cytokine release in immune cells

    Get PDF
    LRRK2 protein is expressed prominently in immune cells, cell types whose contribution to LRRK2-associated genetic Parkinson's disease (PD) is increasingly being recognised. We investigated the effect of inflammatory stimuli using RAW264.7 murine macrophage cells as model systems. A detailed time course of TLR2 and TLR4 stimulation was investigated through measuring LRRK2 phosphorylation at its specific phospho-sites, and Rab8 and Rab10 phosphorylation together with cytokine release following treatment with LPS and zymosan. LRRK2 phosphorylation at Ser935, Ser955 and Ser973 was increased significantly over untreated conditions at 4-24h in both WT-LRRK2 and T1348N-LRRK2 cell lines to similar extents although levels of Ser910 phosphorylation were maintained at higher levels throughout. Importantly we demonstrate that LPS stimulation significantly decreased phospho-Rab10 but not phospho-Rab8 levels over 4-24h in both WT-LRRK2 and T1348N-LRRK2 cell lines. The dephosphorylation of Rab10 was not attributed to its specific phosphatase, PPM1H as the levels remained unaltered with LPS treatment. MAPK phosphorylation occurred prior to LRRK2 phosphorylation which was validated by blocking TLR4 and TLR2 receptors with TAK242 or Sparstolonin B respectively. A significant decrease in basal level of TNFĪ± release was noted in both T1348N-LRRK2 and KO-LRRK2 cell lines at 48h compared to WT-LRRK2 cell line, however LPS and zymosan treatment did not cause any significant alteration in the TNFĪ± and IL-6 release between the three cell lines. In contrast, LPS and zymosan caused significantly lower IL-10 release in T1348N-LRRK2 and KO-LRRK2 cell lines. A significant decrease in phospho-Rab10 levels was also confirmed in human IPS-derived macrophages with TLR4 activation. Our data demonstrates for the first time that LRRK2-dependent Rab10 phosphorylation is modulated by LPS stimulation, and that cytokine release may be influenced by the status of LRRK2. These data provide further insights into the function of LRRK2 in immune response, and has relevance for understanding cellular dysfunctions when developing LRRK2-based inhibitors for clinical treatment

    Human myeloid progenitor glucocorticoid receptor activation causes genomic instability, type 1 IFN- response pathway activation and senescence in differentiated microglia; an early life stress model

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData availability statement: Accession codes: Gene Expression Omnibus GSE73721 (Zhang et al., 2016), GSE99074 (Galatro et al., 2017), dbGaP: phs001373.v2.p2 (Gosselin et al., 2017), SYNAPSE: syn3219045, syn11468526 (Olah et al., 2018).Our RNA-Seq data is available on request.One form of early life stress, prenatal exposure to glucocorticoids (GCs), confers a higher risk of psychiatric and neurodevelopmental disorders in later life. Increasingly, the importance of microglia in these disorders is recognized. Studies on GCs exposure during microglial development have been limited, and there are few, if any, human studies. We established an in vitro model of ELS by continuous pre-exposure of human iPS-microglia to GCs during primitive hematopoiesis (the critical stage of iPS-microglial differentiation) and then examined how this exposure affected the microglial phenotype as they differentiated and matured to microglia, using RNA-seq analyses and functional assays. The iPS-microglia predominantly expressed glucocorticoid receptors over mineralocorticoid receptors, and in particular, the GR-Ī± splice variant. Chronic GCs exposure during primitive hematopoiesis was able to recapitulate in vivo ELS effects. Thus, pre-exposure to prolonged GCs resulted in increased type I interferon signaling, the presence of Cyclic GMP-AMP synthase-positive (cGAS) micronuclei, cellular senescence and reduced proliferation in the matured iPS-microglia. The findings from this in vitro ELS model have ramifications for the responses of microglia in the pathogenesis of GC- mediated ELS-associated disorders such as schizophrenia, attention-deficit hyperactivity disorder and autism spectrum disorder.Alzheimerā€™s SocietyAlzheimer's Research UKNational Institute for Health and Care Research (NIHR

    Soluble Fibrinogen Triggers Non-cell Autonomous ER Stress-Mediated Microglial-Induced Neurotoxicity

    Get PDF
    Aberrant or chronic microglial activation is strongly implicated in neurodegeneration, where prolonged induction of classical inflammatory pathways may lead to a compromised blood-brain barrier (BBB) or vasculature, features of many neurodegenerative disorders and implicated in the observed cognitive decline. BBB disruption or vascular disease may expose the brain parenchyma to ā€œforeignā€ plasma proteins which subsequently impact on neuronal network integrity through neurotoxicity, synaptic loss and the potentiation of microglial inflammation. Here we show that the blood coagulation factor fibrinogen (FG), implicated in the pathogenesis of dementias such as Alzheimerā€™s disease (AD), induces an inflammatory microglial phenotype as identified through genetic microarray analysis of a microglial cell line, and proteome cytokine profiling of primary microglia. We also identify a FG-mediated induction of non-cell autonomous ER stress-associated neurotoxicity via a signaling pathway that can be blocked by pharmacological inhibition of microglial TNFĪ± transcription or neuronal caspase-12 activity, supporting a disease relevant role for plasma components in neuronal dysfunction

    Trem2 promotes anti-inflammatory responses in microglia and is suppressed under pro-inflammatory conditions

    Get PDF
    Recent genome-wide association studies have reported that, amongst other microglial genes, variants in TREM2 can profoundly increase the incidence of developing Alzheimer's disease (AD). We have investigated the role of TREM2 in primary microglial cultures from wild-type mice by using siRNA to decrease Trem2 expression, and in parallel from knock-in mice heterozygous or homozygous for the Trem2 R47H AD risk variant (from the Jackson laboratories). The prevailing phenotype of Trem2 R47H knock-in mice was decreased expression levels of Trem2 in microglia, which resulted in decreased density of microglia in the hippocampus. Overall, primary microglia with reduced Trem2 expression, either by siRNA or from the R47H knock-in mice, displayed a similar phenotype. Comparison of the effects of decreased Trem2 expression under conditions of LPS pro-inflammatory or IL4 anti-inflammatory stimulation revealed the importance of Trem2 in driving a number of the genes up-regulated in the anti-inflammatory phenotype, whether treated with RNAi or performed with microglia carrying the R47H variant. In particular, Trem2 knockdown decreased levels of the transcription factor STAT6. STAT6 is the key mediator downstream from IL4 and controls expression of genes including Arg1, which also showed decreased IL4-induced expression when Trem2 expression was decreased. LPS-induced pro-inflammatory stimulation suppressed Trem2 expression, thus preventing TREM2's anti-inflammatory drive. The importance of Trem2 activity in regulating the pro- and anti-inflammatory balance of microglia, particularly mediating effects of the IL4-regulated anti-inflammatory pathway, has important implications for fighting neurodegenerative disease

    A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the OAS1 gene

    Get PDF
    Recently, we reported oligoadenylate synthetase 1 (OAS1) contributed to the risk of Alzheimer's disease, by its enrichment in transcriptional networks expressed by microglia. However, the function of OAS1 within microglia was not known. Using genotyping from 1313 individuals with sporadic Alzheimer's disease and 1234 control individuals, we confirm the OAS1 variant, rs1131454, is associated with increased risk for Alzheimer's disease. The same OAS1 locus has been recently associated with severe coronavirus disease 2019 (COVID-19) outcomes, linking risk for both diseases. The single nucleotide polymorphisms rs1131454(A) and rs4766676(T) are associated with Alzheimer's disease, and rs10735079(A) and rs6489867(T) are associated with severe COVID-19, where the risk alleles are linked with decreased OAS1 expression. Analysing single-cell RNA-sequencing data of myeloid cells from Alzheimer's disease and COVID-19 patients, we identify co-expression networks containing interferon (IFN)-responsive genes, including OAS1, which are significantly upregulated with age and both diseases. In human induced pluripotent stem cell-derived microglia with lowered OAS1 expression, we show exaggerated production of TNF-Ī± with IFN-Ī³ stimulation, indicating OAS1 is required to limit the pro-inflammatory response of myeloid cells. Collectively, our data support a link between genetic risk for Alzheimer's disease and susceptibility to critical illness with COVID-19 centred on OAS1, a finding with potential implications for future treatments of Alzheimer's disease and COVID-19, and development of biomarkers to track disease progression
    • ā€¦
    corecore