18 research outputs found

    A Variant of GJD2, Encoding for Connexin 36, Alters the Function of Insulin Producing β-Cells.

    Get PDF
    Signalling through gap junctions contributes to control insulin secretion and, thus, blood glucose levels. Gap junctions of the insulin-producing β-cells are made of connexin 36 (Cx36), which is encoded by the GJD2 gene. Cx36-null mice feature alterations mimicking those observed in type 2 diabetes (T2D). GJD2 is also expressed in neurons, which share a number of common features with pancreatic β-cells. Given that a synonymous exonic single nucleotide polymorphism of human Cx36 (SNP rs3743123) associates with altered function of central neurons in a subset of epileptic patients, we investigated whether this SNP also caused alterations of β-cell function. Transfection of rs3743123 cDNA in connexin-lacking HeLa cells resulted in altered formation of gap junction plaques and cell coupling, as compared to those induced by wild type (WT) GJD2 cDNA. Transgenic mice expressing the very same cDNAs under an insulin promoter revealed that SNP rs3743123 expression consistently lead to a post-natal reduction of islet Cx36 levels and β-cell survival, resulting in hyperglycemia in selected lines. These changes were not observed in sex- and age-matched controls expressing WT hCx36. The variant GJD2 only marginally associated to heterogeneous populations of diabetic patients. The data document that a silent polymorphism of GJD2 is associated with altered β-cell function, presumably contributing to T2D pathogenesis

    Isolation and characterization of novel variants of BBI coding genes from the legume Lathyrus sativus.

    No full text
    A pool of twelve cDNA sequences coding for Bowman-Birk inhibitors (BBIs) was identified in the legume grass pea (Lathyrus sativus L.). The corresponding amino acid sequences showed a canonical first anti-trypsin domain, predicted according to the identity of the determinant residue P(1). A more variable second binding loop was observed allowing to identify three groups based on the identity of residue P(1): two groups (Ls_BBI_1 and Ls_BBI_2) carried a second reactive site specific for chymotrypsin, while a third group (Ls_BBI_3) was predicted to inhibit elastase. A fourth variant carrying an Asp in the P(1) position of the second reactive site was identified only from genomic DNA. A phylogenetic tree constructed using grass pea BBIs with their homologs from other legume species revealed grouping based on taxonomy and on specificity of the reactive sites. Five BBI sequences, representing five different second reactive sites, were heterologously expressed in the yeast Pichia pastoris. The recombinant proteins demonstrated to be active against trypsin, while three of them were also active against chymotrypsin, and one against human leukocyte elastase. Comparative modeling and protein docking were used to further investigate interactions between two grass pea BBI isoforms and their target proteases. Thus two reliable 3D models have been proposed, representing two potential ternary complexes, each constituted of an inhibitor and its target enzymes

    TOWARDS THE DISSECTION OF SEEDLESSNESS, A MULTIGENIC TRAIT IN GRAPE

    No full text

    A MOLECULAR EXPLANATION OF SLC25A1 DEFICIENCY RESULTING IN AGENESIS OF CORPUS CALLOSUM AND OPTIC NERVE HYPOPLASIA

    No full text
    Mitochondrial carriers (MCs) form a large family of nuclear-encoded transporters embedded in the inner mitochondrial membrane and in a few cases in other organelle membranes (Palmieri, 2013). The members of this superfamily are widespread in eukaryotes and involved in numerous metabolic pathways and cell functions. They can be easily recognized by their striking sequence features, i.e., a tripartite structure, six transmembrane α-helices and a 3-fold repeated signature motifs. Members of the family vary greatly in the nature and size of their transported substrates, modes of transport (i.e., uniport, symport or antiport) and driving forces, although the molecular mechanism of substrate translocation may be basically the same. In recent years mutations in the MC genes have been shown to be responsible for 11 diseases (Palmieri, 2013), highlighting the important role of MCs in metabolism. MC impairing mutations affect three main regions crucial for substrate translocation. A first group of mutations affects MC conformational changes and locates at PG levels or at the aromatic belts (Pierri et al., 2013). A second group of mutations affects substrate specificity and locates at the common substrate binding site (Robinson et al., 2008) and at the substrate binding area (Pierri et al., 2013). A further group of mutations locate at residues of the m-/c-gates (Palmieri et al., 2013; Robinson et al., 2008) and at residues of the m-gate area (Pierri et al. 2013). For this last group of mutations, it appears difficult to establish if the impaired function is due to the lack of substrate specificity (or substrate recognition) or to the wrong triggering of conformational changes. Two mutations, one at the PG level 1 and one at the common substrate binding site, impairing citrate translocation within SLC25A1_CTP protein are presented. The two mutations are found to be responsible of agenesis of corpus callosum and optic nerve hypoplasia (Edvardson et al., 2013). References 1. Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med. 2013;34:465. 2. Pierri CL, Palmieri F, De Grassi A. Single-nucleotide evolution quantifies the importance of each site along the structure of mitochondrial carriers. Cell Mol Life Sci. 2013. 3. Robinson AJ, Overy C, Kunji ER. The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc Natl Acad Sci U S A. 2008;105:17766. 4. Edvardson S, Porcelli V, Jalas C, Soiferman D, Kellner Y, Shaag A, Korman SH, Pierri CL, Scarcia P, Fraenkel ND, Segel R, Schechter A, Frumkin A, Pines O, Saada A, Palmieri L, Elpeleg O. Agenesis of corpus callosum and optic nerve hypoplasia due to mutations in SLC25A1 encoding the mitochondrial citrate transporter. J Med Genet. 2013;50:240
    corecore