31 research outputs found

    Extracellular matrix protein anosmin-1 modulates olfactory ensheathing cell maturation in chick olfactory bulb development

    Get PDF
    Olfactory ensheathing cells (OECs) are a specialized class of glia, wrapping around olfactory sensory axons that target the olfactory bulb (OB) and cross the peripheral nervous system/central nervous system boundary during development and continue to do so post-natally. OEC subpopulations perform distinct subtype-specific functions dependent on their maturity status. Disrupted OEC development is thought to be associated with abnormal OB morphogenesis, leading to anosmia, a defining characteristic of Kallmann syndrome. Hence, anosmin-1 encoded by Kallmann syndrome gene (KAL-1) might modulate OEC differentiation/maturation in the OB. We performed in ovo electroporation of shRNA in the olfactory placode to knock-down kal in chick embryos, resulting in abnormal OB morphogenesis and loss of olfactory sensory axonal innervation into OB. BLBP-expressing OECs appeared to form a thinner and poorly organized outmost OB layer where SOX10 expressing OECs were completely absent with emergence of GFAP-expressing OECs. Furthermore, in embryonic day 10 chick OB explant cultures, GFAP expression in OECs accumulating along the OB nerve layers was dramatically reduced by recombinant anosmin-1. We then purified immature OECs from embryonic day 10 chick OB. These cells express GFAP after 7 days in vitro, exhibiting a multipolar morphology. Overexpression of chick anosmin, exogenous anosmin-1 or FGF2 could inhibit GFAP expression with cells presenting elongated morphology, which was blocked by the FGF receptor inhibitor Su5402. These data demonstrate that anosmin-1 functions via FGF signalling in regulating OEC maturation, thereby providing a permissive glial environment for axonal innervation into the OB during development

    Pituitary function at presentation and following therapy in patients with non-functional pituitary macroadenomas: a single centre retrospective cohort study

    Get PDF
    Background: Non-functioning pituitary macroadenomas (NFPMs) may present with hypopituitarism. Pituitary surgery and radiotherapy pose an additional risk to pituitary function. Objectives: To assess the incidence of hypopituitarism at presentation, the impact of treatment, and the likelihood of endocrine recovery during follow-up. Methods: All patients treated surgically with and without radiotherapy for NFPMs between 1987 and 2018 who had longer than six months follow-up were identified. Demographics, presentation, investigation, treatment, and outcomes were collected. Results: In total, 383 patients were identified. The median age was 57 years, with a median follow-up of 8 years. Preoperatively, 227 patients (227/375; 61%) had evidence of at least one pituitary deficiency. Anterior panhypopituitarism was more common in men (p = 0.001) and older patients (p = 0.005). Multiple hormone deficiencies were associated with large tumours (p = 0.03). Patients treated with surgery and radiotherapy had a higher incidence of all individual pituitary hormone deficiency, anterior panhypopituitarism, and significantly lower GH, ACTH, and TSH deficiencies free survival probability than those treated with surgery alone. Recovery of central hypogonadism, hypothyroidism, and anterior panhypopituitarism was also less likely to be reported in those treated with surgery and radiotherapy. Those with preoperative hypopituitarism had a higher risk of pituitary impairment at latest review than those presented with normal pituitary function (p = 0.001). Conclusion: NFPMs are associated with a significant degree of hypopituitarism at time of diagnosis and post-therapy. The combination of surgery and radiotherapy is associated with a higher risk of pituitary dysfunction. Recovery of pituitary hormone deficit may occur after treatment. Patients should have regular ongoing endocrine evaluation post-treatment to assess changes in pituitary function and the need for long-term replacement therapy

    Non-functioning pituitary macroadenoma following surgery: long-term outcomes and development of an optimal follow-up strategy

    Get PDF
    OBJECTIVES: Recurrence and regrowth of non-functioning pituitary macroadenomas (NFPMs) after surgery are common but remain unpredictable. Therefore, the optimal timing and frequency of follow-up imaging remain to be determined. We sought to determine the long-term surgical outcomes of NFPMs following surgery and develop an optimal follow-up strategy. METHODS: Patients underwent surgery for NFPMs between 1987 and 2018, with a follow-up of 6 months or more, were identified. Demographics, presentation, management, histology, imaging, and surgical outcomes were retrospectively collected. RESULTS: In total, 383 patients were included; 256 were men (256/383; 67%) with median follow-up of 8 years. Following primary surgery, 229 patients (229/383; 60%) achieved complete resection. Of those, 28 (28/229; 11%) developed recurrence, including six needed secondary surgery (6/229; 3%). The rate of complete resection improved over time; in the last quartile of cases, 77 achieved complete resection (77/95; 81%). Reoperation-free survival at 5, 10 and 15 years was 99%, 94% and 94%, respectively. NFPMs were incompletely resected in 154 patients (154/383; 40%); of those, 106 (106/154; 69%) had regrowth, and 84 (84/154; 55%) required reoperation. Surgical reintervention-free survival at 5, 10 and 15 years was 74%,49% and 35%, respectively. Young age and cavernous sinus invasion were risk factors for undergoing reoperation (P < 0.001 and P < 0.0001, respectively) and radiotherapy (P = 0.003 and P < 0.001, respectively). Patients with residual tumour required reoperation earlier than those underwent complete resection (P = 0.02). Radiotherapy to control tumour regrowth was delivered to 65 patients (65/383; 17%) after median time of 1 year following surgery. Radiotherapy was administered more in patients with regrowth of residual disease (61/106; 58%) than those who had NFPMs recurrence (4/28; 14%) (P ≤ 0.001) Following postoperative radiotherapy, one patient (1/65; 2%) had evidence of regrowth, seven (7/65; 11%) had tumour regression on imaging, and no patients underwent further surgery. CONCLUSIONS: NFPMs recurrence and regrowth are common, particularly in patients with residual disease post-operatively. We propose a follow-up strategy based on stratifying patients as "low risk" if there is no residual tumour, with increasing scan intervals, or "high risk" if there is a residual tumour, with annual scans for at least five years and extended lifelong surveillance after that

    The clinical outcomes of imaging modalities for surgical management Cushing’s disease – A systematic review and meta-analysis

    Get PDF
    INTRODUCTION: Cushing’s disease presents major diagnostic and management challenges. Although numerous preoperative and intraoperative imaging modalities have been deployed, it is unclear whether these investigations have improved surgical outcomes. Our objective was to investigate whether advances in imaging improved outcomes for Cushing’s disease. METHODS: Searches of PubMed and EMBASE were conducted. Studies reporting on imaging modalities and clinical outcomes after surgical management of Cushing’s disease were included. Multilevel multivariable meta-regressions identified predictors of outcomes, adjusting for confounders and heterogeneity prior to investigating the effects of imaging. RESULTS: 166 non-controlled single-arm studies were included, comprising 13181 patients over 44 years. The overall remission rate was 77.0% [CI: 74.9%-79.0%]. Cavernous sinus invasion (OR: 0.21 [CI: 0.07-0.66]; p=0.010), radiologically undetectable lesions (OR: 0.50 [CI: 0.37–0.69]; p<0.0001), previous surgery (OR=0.48 [CI: 0.28–0.81]; p=0.008), and lesions ≥10mm (OR: 0.63 [CI: 0.35–1.14]; p=0.12) were associated with lower remission. Less stringent thresholds for remission was associated with higher reported remission (OR: 1.37 [CI: 1.1–1.72]; p=0.007). After adjusting for this heterogeneity, no imaging modality showed significant differences in remission compared to standard preoperative MRI. The overall recurrence rate was 14.5% [CI: 12.1%-17.1%]. Lesion ≥10mm was associated with greater recurrence (OR: 1.83 [CI: 1.13–2.96]; p=0.015), as was greater duration of follow-up (OR: 1.53 (CI: 1.17–2.01); p=0.002). No imaging modality was associated with significant differences in recurrence. Despite significant improvements in detection rates over four decades, there were no significant changes in the reported remission or recurrence rates. CONCLUSION: A lack of controlled comparative studies makes it difficult to draw definitive conclusions. Within this limitation, the results suggest that despite improvements in radiological detection rates of Cushing’s disease over the last four decades, there were no changes in clinical outcomes. Advances in imaging alone may be insufficient to improve surgical outcomes. SYSTEMATIC REVIEW REGISTRATION: https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42020187751

    Serotonin Receptor 1A (HTR1A), a Novel Regulator of GnRH Neuronal Migration in Chick Embryo

    Get PDF
    The hypothalamic GnRH neurons are a small group of cells that regulate the reproductive axis. These neurons are specified within the olfactory placode, delaminate from this structure, and then migrate to enter the forebrain before populating the hypothalamus. We have used microarray technology to analyze the transcriptome of the olfactory placode at a number of key time points for GnRH ontogeny using the chick embryo. This resulted in the identification of a large number of genes whose expression levels change significantly over this period. This repertoire includes those genes that are known to be important for GnRH neuronal development as well as many novel genes, such as the serotonin receptor 1A, HTR1A. We find that HTR1A is expressed in the region of the olfactory placode that generates GnRH neurons. We further show that when this receptor is inactivated using a selective HTR1A antagonist as well as a gene knockdown approach using RNAi, this resulted in delayed migration causing the GnRH neurons to stall just outside the forebrain. These findings implicate HTR1A as being important for GnRH neuronal migration from the olfactory placode to the forebrain. Our study thus extends the repertoire of genes involved in GnRH neuron biology and thus identifies new candidate genes that can be screened for in patients who do not show mutations in any of the previously identified hypogonadotrophic hypogonadism/Kallmann syndrome genes

    GnRH neuronal migration and olfactory bulb neurite outgrowth are dependent on FGF receptor 1 signalling, specifically via the PI3K p110α isoform in chick embryo

    No full text
    Fibroblast growth factor (FGF) signaling is essential for both olfactory bulb (OB) morphogenesis and the specification, migration, and maturation of the GnRH-secreting neurons. Disruption of FGF signaling contributes to Kallmann syndrome characterized by both anosmia and sexual immaturity. However, several unanswered questions remain as to which specific FGF receptor (FGFR)-1 signaling pathways are necessary for OB and GnRH neuronal development. Here, using pharmacological phosphatidylinositol 3-kinase (PI3K) isoform-specific inhibitors, we demonstrate a central role for the PI3K p110α isoform as a downstream effector of FGFR1 signaling for both GnRH neuronal migration and OB development. We show that signaling via the PI3K p110α isoform is required for GnRH neuronal migration in explant cultures of embryonic day (E) 4 chick olfactory placodes. We also show that in ovo administration of LY294002, a global PI3K inhibitor as well as an inhibitor to the PI3K p110α isoform into the olfactory placode of E3 chick embryo impairs GnRH neuronal migration toward the forebrain. In contrast, in ovo PI3K inhibitor treatment produced no obvious defects on primary olfactory sensory neuron axonal targeting and bundle formation. We also demonstrate that anosmin-1 and FGF2 induced neuronal migration of immortalized human embryonic GnRH neuroblast cells (FNC-B4-hTERT) is mediated by modulating FGFR1 signaling via the PI3K p110α isoform, specifically through phosphorylation of the PI3K downstream effectors, Akt and glycogen synthase kinase-3β. Finally, we show that neurite outgrowth and elongation of OB neurons in E10 chick OB explants are also dependent on the PI3K p110α isoform downstream of FGFR1. This study provides mechanistic insight into the etiology of Kallmann syndrome.</jats:p
    corecore