7,683 research outputs found

    On false discovery rate thresholding for classification under sparsity

    Get PDF
    We study the properties of false discovery rate (FDR) thresholding, viewed as a classification procedure. The "0"-class (null) is assumed to have a known density while the "1"-class (alternative) is obtained from the "0"-class either by translation or by scaling. Furthermore, the "1"-class is assumed to have a small number of elements w.r.t. the "0"-class (sparsity). We focus on densities of the Subbotin family, including Gaussian and Laplace models. Nonasymptotic oracle inequalities are derived for the excess risk of FDR thresholding. These inequalities lead to explicit rates of convergence of the excess risk to zero, as the number m of items to be classified tends to infinity and in a regime where the power of the Bayes rule is away from 0 and 1. Moreover, these theoretical investigations suggest an explicit choice for the target level αm\alpha_m of FDR thresholding, as a function of m. Our oracle inequalities show theoretically that the resulting FDR thresholding adapts to the unknown sparsity regime contained in the data. This property is illustrated with numerical experiments

    Asymptotic behavior of the growth-fragmentation equation with bounded fragmentation rate

    Full text link
    We are interested in the large time behavior of the solutions to the growth-fragmentation equation. We work in the space of integrable functions weighted with the principal dual eigenfunction of the growth-fragmentation operator. This space is the largest one in which we can expect convergence to the steady size distribution. Although this convergence is known to occur under fairly general conditions on the coefficients of the equation, we prove that it does not happen uniformly with respect to the initial data when the fragmentation rate in bounded. First we get the result for fragmentation kernels which do not form arbitrarily small fragments by taking advantage of the Dyson-Phillips series. Then we extend it to general kernels by using the notion of quasi-compactness and the fact that it is a topological invariant

    Well-posedness analysis of multicomponent incompressible flow models

    Get PDF
    In this paper, we extend our study of mass transport in multicomponent isothermal fluids to the incompressible case. For a mixture, incompressibility is defined as the independence of average volume on pressure, and a weighted sum of the partial mass densities stays constant. In this type of models, the velocity field in the Navier-Stokes equations is not solenoidal and, due to different specific volumes of the species, the pressure remains connected to the densities by algebraic formula. By means of a change of variables in the transport problem, we equivalently reformulate the PDE system as to eliminate positivity and incompressibility constraints affecting the density, and prove two type of results: the local-in-time well-posedness in classes of strong solutions, and the global-in-time existence of solutions for initial data sufficiently close to a smooth equilibrium solution

    Online Sequential Monte Carlo smoother for partially observed stochastic differential equations

    Full text link
    This paper introduces a new algorithm to approximate smoothed additive functionals for partially observed stochastic differential equations. This method relies on a recent procedure which allows to compute such approximations online, i.e. as the observations are received, and with a computational complexity growing linearly with the number of Monte Carlo samples. This online smoother cannot be used directly in the case of partially observed stochastic differential equations since the transition density of the latent data is usually unknown. We prove that a similar algorithm may still be defined for partially observed continuous processes by replacing this unknown quantity by an unbiased estimator obtained for instance using general Poisson estimators. We prove that this estimator is consistent and its performance are illustrated using data from two models

    Overlapping stochastic block models with application to the French political blogosphere

    Full text link
    Complex systems in nature and in society are often represented as networks, describing the rich set of interactions between objects of interest. Many deterministic and probabilistic clustering methods have been developed to analyze such structures. Given a network, almost all of them partition the vertices into disjoint clusters, according to their connection profile. However, recent studies have shown that these techniques were too restrictive and that most of the existing networks contained overlapping clusters. To tackle this issue, we present in this paper the Overlapping Stochastic Block Model. Our approach allows the vertices to belong to multiple clusters, and, to some extent, generalizes the well-known Stochastic Block Model [Nowicki and Snijders (2001)]. We show that the model is generically identifiable within classes of equivalence and we propose an approximate inference procedure, based on global and local variational techniques. Using toy data sets as well as the French Political Blogosphere network and the transcriptional network of Saccharomyces cerevisiae, we compare our work with other approaches.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS382 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Cyclic asymptotic behaviour of a population reproducing by fission into two equal parts

    Get PDF
    We study the asymptotic behaviour of the following linear growth-fragmentation equationtu(t,x)+x(xu(t,x))+B(x)u(t,x)=4B(2x)u(t,2x),\dfrac{\partial}{\partial t} u(t,x) + \dfrac{\partial}{\partial x} \big(x u(t,x)\big) + B(x) u(t,x) =4 B(2x)u(t,2x), and prove that under fairly general assumptions on the division rate B(x),B(x), its solution converges towards an oscillatory function,explicitely given by the projection of the initial state on the space generated by the countable set of the dominant eigenvectors of the operator. Despite the lack of hypo-coercivity of the operator, the proof relies on a general relative entropy argument in a convenient weighted L2L^2 space, where well-posedness is obtained via semigroup analysis. We also propose a non-dissipative numerical scheme, able to capture the oscillations
    corecore