3,117 research outputs found

    Thermo-mechanical behaviour of the raffinate resulting from the aqueous extraction of sunflower whole plant in twin-screw extruder: manufacturing of biodegradable agromaterials by thermo-pressing

    Get PDF
    Biorefinery of sunflower whole plant can be realized using a twin-screw extruder. Thermo-mechanical fractionation and aqueous extraction are conducted simultaneously. A filter section is outfitted along the barrel to collect continuously an extract and a raffinate (cake meal). Oil yield obtained is 53%. Proteins are partly extracted at the same time, just as pectins and hemicelluloses. Protein yield is 46%. Cake meal is relatively moist (66% for the moisture content). It is first dried to make easier its conservation. It is largely composed of lignocellulosic fibres (59% of the dry matter) from depithed stalk. Lipid content is 13% of the dry matter or 35% of the oil in whole plant. Protein content is 7% of the dry matter or 45% of the proteins in whole plant. DSC measurements indicate that denaturation of proteins is almost complete in the cake meal. DMTA spectrum of its milled powder reveals a significant peak at high temperature (between 175 and 200°C). As already observed with industrial sunflower cake meal, it can be associated with the glass transition of proteins. As a mixture of fibres and proteins, the cake meal can be considered as a natural composite. It is successfully processed into biodegradable and value-added agromaterials by thermo-pressing. As for DMTA analysis, the glass transition of proteins in the cake meal is also observed with PVT analysis at around 180°C. It makes easier the choice of the best thermo-pressing conditions to produce panels with higher mechanical properties in bending. These properties increase simultaneously with temperature, pressure and time chosen for molding operation. The highest flexural strength at break (11.5 MPa) and the highest elastic modulus (2.22 GPa) are obtained for the next molding conditions: 200°C and 320 kgf/cm2 during 60 s. Drop angle measurements show that the corresponding panel is also the most resistant to water. No significant transition is observed inside this panel above 0°C and until 200°C with DMTA analysis. Proteins ensure the agromaterial cohesion without any phase change in this temperature range, and fibres entanglement also acts like reinforcement. This panel could be used as inter-layer sheets for pallets or for the manufacturing of biodegradable containers (composters, crates for vegetable gardening) by assembly of panels

    Thermo-pressing of cake meal from sunflower whole plant, one only operation for two actions : expression of residual oil and molding of biodegradable agromaterials

    Get PDF
    The starting material used in this study was a cake generated during thermo-mechanical fractionation of sunflower (Helianthus annuus L.) whole plant in a Clextral BC 45 (France) twin-screw extruder. It was slightly deoiled (17.6% dry matter for residual oil content), leading to an oil extraction yield of 46.1% (yield based on the residual oil content in cake). As it was a mixture of fibers and proteins, it could be considered as a natural composite that was processed successfully into fiberboards by thermo-pressing. This study aimed to evaluate the influence of thermo-pressing conditions on oil expression yield during molding and on flexural properties of fiberboards manufactured from this cake. An experimental design with three variables was realized: from 250 to 500 kgf/cm² for pressure applied (in 5 levels), from 60 to 300 s for molding time (in 7 levels), and from 600 to 1200 mg/cm² for cake quantity (in 3 levels). Temperature of the aluminium mold positioned between the two plates of the heated hydraulic press (PEI, France) with 400 tons capacity was 200°C. All fiberboards were cohesive. As an internal binder, proteins ensured the agromaterial cohesion, and fibers entanglement also acted like reinforcement. Thermo-pressing was not only a molding operation. It also consisted in increasing the oil extraction efficiency. Oil expression yield during molding increased with the increase of pressure applied, and especially with the increase of molding time. At the same time, it was not so much influenced by the modification of cake quantity. Highest oil expression yield was 58.8% in proportion to the oil that the cake contained, leading to a total oil yield (oil extracted by water in twin-screw extruder, and oil expressed during molding) of 77.8% in proportion to the oil that the sunflower whole plant contained. It was associated with the next thermo-pressing conditions: 469 kgf/cm² for pressure applied, 300 s for molding time, and 697 mg/cm² for cake quantity. Flexural properties of the corresponding fiberboard were 8.1 MPa for flexural strength at break, and 1778 MPa for elastic modulus. Its thickness was 5.40 mm, leading to a mean apparent density of 1.25. Such flexural strength at break was a bit lower (-25%) than the one of the most resistant fiberboard (10.8 MPa), manufactured from the next thermo-pressing conditions: 250 kgf/cm² for pressure applied, 300 s for molding time, and 807 mg/cm² for cake quantity. For such conditions, oil expression yield was 48.0% in proportion to the oil that the cake contained, leading to a total oil yield close (-8%) to the highest yield obtained (71.9% in proportion to the oil that the sunflower whole plant contained instead of 77.8%). Thermo-pressing of cake from sunflower whole plant led to two actions in a single step: the expression of part of residual oil in cake that contributed to the improvement of the oil extraction efficiency, and the molding of biodegradable fiberboards. Their flexural properties were promising. Moreover, because residual oil content in fiberboards was at least 8.0% dry matter, they were not too water-sensitive (i.e. more durable than other thermo-pressed agromaterials). Such fiberboards were value-added agromaterials that may have direct industrial applications. Indeed, they would be potentially usable as inter-layer sheets for pallets, for the manufacturing of biodegradable containers (composters, crates for vegetable gardening), or for their heat insulation properties in building trade

    The twin-screw extrusion technology, an original and powerful solution for the biorefinery of sunflower whole plant

    Get PDF
    The objective of this study was to evaluate the feasibility of an aqueous process for the biorefinery of sunflower whole plant using a twin-screw extruder. Aqueous extraction of oil was chosen as an environment-friendly alternative to the solvent extraction. The extruder was used to carry out three essential unit operations: grinding, liquid/solid extraction, and liquid/solid separation. Wringing out the mixing was effective. However, drying of the cake meal was not optimal. Lixiviation of cotyledon cells was also incomplete. Extraction efficiency depended on operating conditions: screw rotation speed, and input flow rates of whole plant and water. In the best conditions, oil yield was 57%. Residual oil content in the cake meal was 14%. These conditions leaded to the co-extraction of proteins, pectins, and hemicelluloses. The corresponding protein yield was 44%. Oil was extracted in the form of two oil-in-water emulsions. These hydrophobic phases were stabilized by phospholipids and proteins at interface. An aqueous extract containing part of the water-soluble constituents, mainly proteins and pectins, was also generated. As a mixture of fibers and proteins, the cake meal was molded by thermo-pressing. Panels produced had interesting mechanical properties in bending. The obtained fractions may have applications as bases for industrial products

    Eloigner les enfants de leur famille

    Get PDF

    Imaging of highly inhomogeneous strain field in nanocrystals using x-ray Bragg ptychography: A numerical study

    No full text
    International audienceX-ray ptychography is a lensless microscopy method able to provide extended field of view with spatial resolution above the diffraction limit. A series of intensity coherent diffraction patterns measured in the far field is used to obtain the numerical deconvolution between the sample scattering contrast and the illumination function. The measurements are performed with a finite-size beam spot scanned across the sample. The scan step, smaller than the beam size, ensures a high redundancy in the data set, which allows for the convergence of the iterative inversion algorithm. This work explores the possibility to use ptychography for the investigation of strained crystals by means of coherent x-ray Bragg diffraction, taking advantage of the high sensitivity to the atomic displacement fields. The Bragg diffraction scattering contrast is described by an effective complex-valued electron density, where the phase holds the information on the displacement field. The detailed two-dimensional numerical study of Bragg ptychography is presented, both for the known and unknown illumination cases. It demonstrates the high robustness of the ptychographical iterative engine for highly nonhomogeneous strain fields. In particular, the local information is extracted from the individual diffraction patterns to calculate the modulus and phase estimates of the electron density, which are further used to constrain the newly derived algorithm. From this work, it is foreseen that Bragg ptychography when experimentally feasible, will open the way to the nondestructive imaging of strain fields at the nanoscale

    Spin liquid correlations in Nd-langasite anisotropic Kagom\'e antiferromagnet

    Full text link
    Dynamical magnetic correlations in the geometrically frustrated Nd_3\_3Ga_5\_5SiO_14\_{14} compound were probed by inelastic neutron scattering on a single crystal. A scattering signal with a ring shape distribution in reciprocal space and unprecedented dispersive features was discovered. Comparison with calculated static magnetic scattering from models of correlated spins suggests that the observed phase is a spin liquid inherent to an antiferromagnetic kagom\'e-like lattice of anisotropic Nd moments.Comment: 4 page

    Adaptive force biasing algorithms: new convergence results and tensor approximations of the bias

    Get PDF
    A modification of the Adaptive Biasing Force method is introduced, in which the free energy is approximated by a sum of tensor products of one-dimensional functions. This enables to handle a larger number of reaction coordinates than the classical algorithm. We prove the algorithm is well-defined and prove the long-time convergence toward a regularized version of the free energy for an idealized version of the algorithm. Numerical experiments demonstrate that the method is able to capture correlations between reaction coordinates

    Diffusion coefficient and shear viscosity of rigid water models

    Full text link
    We report the diffusion coefficient and viscosity of popular rigid water models: Two non polarizable ones (SPC/E with 3 sites, and TIP4P/2005 with 4 sites) and a polarizable one (Dang-Chang, 4 sites). We exploit the dependence of the diffusion coefficient on the system size [Yeh and Hummer, J. Phys. Chem. B 108, 15873 (2004)] to obtain the size-independent value. This also provides an estimate of the viscosity of all water models, which we compare to the Green-Kubo result. In all cases, a good agreement is found. The TIP4P/2005 model is in better agreement with the experimental data for both diffusion and viscosity. The SPC/E and Dang-Chang water overestimate the diffusion coefficient and underestimate the viscosity.Comment: 10 pages, 2 figures. To be published in J. Phys.: Condens. Matte

    Noise models for low counting rate coherent diffraction imaging

    No full text
    International audienceCoherent diffraction imaging (CDI) is a lens-less microscopy method that extracts the complex-valued exit field from intensity measurements alone. It is of particular importance for microscopy imaging with diffraction set-ups where high quality lenses are not available. The inversion scheme allowing the phase retrieval is based on the use of an iterative algorithm. In this work, we address the question of the choice of the iterative process in the case of data corrupted by photon or electron shot noise. Several noise models are presented and further used within two inversion strategies, the ordered subset and the scaled gradient. Based on analytical and numerical analysis together with Monte-Carlo studies, we show that any physical interpretations drawn from a CDI iterative technique require a detailed understanding of the relationship between the noise model and the used inversion method. We observe that iterative algorithms often assume implicitly a noise model. For low counting rates, each noise model behaves differently. Moreover, the used optimization strategy introduces its own artefacts. Based on this analysis, we develop a hybrid strategy which works efficiently in the absence of an informed initial guess. Our work emphasises issues which should be considered carefully when inverting experimental data
    corecore