5 research outputs found
Possible Impacts of Climate Change on Mediterranean Irrigated Farming Systems
In the agricultural sector, climate change (CC) affects multiple weather variables at different stages of crop cycles. CC may influence the mean level or affect the distribution of events (e.g., rainfall, temperature). This work evaluates the economic impact of CC-related changes in multiple climatic components, and the resulting uncertainty. For this purpose, a three-stage discrete stochastic programming model is used to represents farm sector of an irrigated area of Italy and to examine the influence of CC on rainfall and on maximum temperature. These variables affect the availability of water for agriculture and the water requirements of irrigated crops. The states of nature, and their change, are defined more broadly than in previous analyses; this allows examining the changes of more climatic variables and crops cultivation. The effect of CC is obtained by comparing the results of scenarios that represent the climatic conditions in the current situation and in the future. The results show that the agricultural sector would seek to lower costs by modifying patterns of land use, farming practices and increasing the use groundwater. The overall economic impact of these changes is small and due primarily to the reduced availability of water in the future. The temperature increase is, in fact, largely offset by the effects of the increase in CO2 levels, which boosts the yield of main crops of the irrigated zone. Therefore, availability and water management becomes a crucial factor to offset the increase of evapotranspiration and of water stress resulting from the increase of temperature. However, the costs of CC are very high for some types of farming, which suffer a large reduction in income.discrete stochastic programming model, climate change, water availability, irrigation requirements, Farm Management, Resource /Energy Economics and Policy,
Possible Impacts of Climate Change on Mediterranean Irrigated Farming Systems
In the agricultural sector, climate change (CC) affects multiple weather variables at different stages of crop cycles. CC may influence the mean level or affect the distribution of events (e.g., rainfall, temperature). This work evaluates the economic impact of CC-related changes in multiple climatic components, and the resulting uncertainty. For this purpose, a three-stage discrete stochastic programming model is used to represents farm sector of an irrigated area of Italy and to examine the influence of CC on rainfall and on maximum temperature. These variables affect the availability of water for agriculture and the water requirements of irrigated crops. The states of nature, and their change, are defined more broadly than in previous analyses; this allows examining the changes of more climatic variables and crops cultivation.
The effect of CC is obtained by comparing the results of scenarios that represent the climatic conditions in the current situation and in the future. The results show that the agricultural sector would seek to lower costs by modifying patterns of land use, farming practices and increasing the use groundwater. The overall economic impact of these changes is small and due primarily to the reduced availability of water in the future. The temperature increase is, in fact, largely offset by the effects of the increase in CO2 levels, which boosts the yield of main crops of the irrigated zone. Therefore, availability and water management becomes a crucial factor to offset the increase of evapotranspiration and of water stress resulting from the increase of temperature. However, the costs of CC are very high for some types of farming, which suffer a large reduction in income
Evaluating productive and economic impacts of climate change variability on the farm sector of an irrigated Mediterranean area
Climate changes in agriculture act on various climate variables (precipitation, temperature, etc..) at
different times of crop cycles. Many physical and technical relationships have to be represented even
when analyzing a limited aspect of farm management. This work employs the net evapotranspiration
(ETn) estimated with the EPIC model, as a synthetic index of the physical factors that the farmer
considers in decisions on irrigation. The probability distribution of ETn is inserted into a territorial
model of DSP that represents farm choices in conditions of uncertainty about water availability and
irrigation requirements of crops. Recent trends of ETn suggest that the probability distribution of this
variable may appreciably change in the near future. Also, water availability may become more
variable due to changed rainfall. These modifications amplify uncertainty of management and,
consequently, costs incurred by the farm typologies of the study area, which in many cases suffer an
appreciable drop in income
Untargeted lipidomics of ovine milk to analyse the influence of different diet regimens
In this work we report a lipidomics approach to study the effects of two diet systems on the composition of ovine milk. Milk from two groups of Sarda sheep grazing on 40% (P40) and 60% (P60) of pasture were analyzed by a UHPLC-QTOF-MS analytical platform and data submitted to multivariate statistical analysis. Pairwise partial least square discriminant analysis of the lipid profile of the data was carried out to classify samples and to find discriminant lipids. The two dietary groups were characterized by differences in triacylglycerols, phosphocholines and phosphatidylethanolamines levels. Discriminants of the P40 group were TG and PC containing in their backbone saturated medium chain FA thus suggesting greater de novo fatty synthesis in the mammary gland. On the other hand, the P60 group was characterized by TG and PC formed by unsaturated long chain FA originating from the diet or from lipid mobilization