232 research outputs found
The excitation function for Li+HF-->LiF+H at collision energies below 80 meV
We have measured the dependence of the relative integral cross section of the
reaction Li+HF-->LiF+H on the collision energy using crossed molecular beams.
By varying the intersection angle of the beams from 37{\deg} to 90{\deg} we
covered the energy range 25 meV < E_tr < 131 meV. We observe a monotonous rise
of the cross section with decreasing energy over the entire energy range
indicating that a possible translational energy threshold to the reaction is
significantly smaller than 25 meV. The steep rise is quantitatively recovered
by a Langevin-type excitation function based on a vanishing threshold and a
mean interaction potential energy ~R^-2.5 where R is the distance between the
reactants. To date all threshold energies deduced from ab-initio potentials and
zero-point vibrational energies are at variance with our results, however, our
findings support recent quantum scattering calculations that predict
significant product formation at collision energies far below these theoretical
thresholds.Comment: 8 pages, 7 figure
Notes on the reproductive condition of early colonizing S. Luridus in the Sicily Strait (Mediterranean Sea)
This paper summarizes some observations on gonad development and fecundity of the Lessepsian migrant Siganus luridus (Osteichthyes: Siganidae), recently settled in the islands of Malta and Linosa (Sicily strait, Mediterranean sea). The analysis of ovarian and testicular development showed that these early colonizers attain final gonad maturation and have the potential for successful reproduction.peer-reviewe
Space efficient opposed-anvil high-pressure cell and its application to optical and NMR measurements up to 9 GPa
We have developed a new type of opposed-anvil high pressure cell with
substantially improved space efficiency. The clamp cell and the gasket are made
of non-magnetic Ni-Cr-Al alloy. Non-magnetic tungsten carbide (NMWC) is used
for the anvils. The assembled cell with the dimension \phi 29mm \times 41mm is
capable of generating pressure up to 9 GPa over a relatively large volume of 7
mm3. Our cell is particularly suitable for those experiments which require
large sample space to achieve good signal-to-noise ratio, such as the nuclear
magnetic resonance (NMR) experiment. Argon is used as the pressure transmitting
medium to obtain good hydrostaticity. The pressure was calibrated in situ by
measuring the fluorescence from ruby through a transparent moissanite (6H-SiC)
window. We have measured the pressure and temperature dependences of the 63Cu
nuclear-quadrupole-resonance (NQR) frequency of Cu2O, the in-plane Knight shift
of metallic tin, and the Knight shift of platinum. These quantities can be used
as reliable manometers to determine the pressure values in situ during the
NMR/NQR experiments up to 9 GPa.Comment: 9 pages, 5 figures, 3 tables, accepted for publication in J. Phys.
Soc. Jp
Magnetic Field and Pressure Phase Diagrams of Uranium Heavy-Fermion Compound UZn
We have performed magnetization measurements at high magnetic fields of up to
53 T on single crystals of a uranium heavy-fermion compound UZn
grown by the Bridgman method. In the antiferromagnetic state below the N\'{e}el
temperature = 9.7 K, a metamagnetic transition is found at
32 T for the field along the [110] direction (-axis). The
magnetic phase diagram for the field along the [110] direction is
given. The magnetization curve shows a nonlinear increase at 35
T in the paramagnetic state above up to a characteristic
temperature where the magnetic susceptibility or
electrical resistivity shows a maximum value. This metamagnetic behavior of the
magnetization at is discussed in comparison with the metamagnetic
magnetism of the heavy-fermion superconductors UPt, URuSi, and
UPdAl. We have also carried out high-pressure resistivity measurement
on UZn using a diamond anvil cell up to 8.7 GPa. Noble gas argon was
used as a pressure-transmitting medium to ensure a good hydrostatic
environment. The N\'{e}el temperature is almost
pressure-independent up to 4.7 GPa and starts to increase in the
higher-pressure region. The pressure dependences of the coefficient of the
term in the electrical resistivity , the antiferromagnetic gap
, and the characteristic temperature are
discussed. It is found that the effect of pressure on the electronic states in
UZn is weak compared with those in the other heavy fermion
compounds
TEX (TEst stand for X-band) at LNF
TEX facility if commissioned for high power testing to characterize
accelerating structures and validate them for the operation on future particle
accelerators for medical, industrial and research applications. At this aim,
TEX is directly involved in the LNF leading project EuPRAXIA@SPARC_Lab. The
brief description of the facility and its status and prospective will be
provided.Comment: Talk presented at the International Workshop on Future Linear
Colliders (LCWS 2023), 15-19 May 2023. C23-05-15.
Equation of state and phonon frequency calculations of diamond at high pressures
The pressure-volume relationship and the zone-center optical phonon frequency
of cubic diamond at pressures up to 600 GPa have been calculated based on
Density Functional Theory within the Local Density Approximation and the
Generalized Gradient Approximation. Three different approaches, viz. a
pseudopotential method applied in the basis of plane waves, an all-electron
method relying on Augmented Plane Waves plus Local Orbitals, and an
intermediate approach implemented in the basis of Projector Augmented Waves
have been used. All these methods and approximations yield consistent results
for the pressure derivative of the bulk modulus and the volume dependence of
the mode Grueneisen parameter of diamond. The results are at variance with
recent precise measurements up to 140 GPa. Possible implications for the
experimental pressure determination based on the ruby luminescence method are
discussed.Comment: 10 pages, 6 figure
Analysis of the Aedes albopictus C6/36 genome provides insight into cell line utility for viral propagation
BACKGROUND: The 50-year-old Aedes albopictus C6/36 cell line is a resource for the detection, amplification, and analysis of mosquito-borne viruses including Zika, dengue, and chikungunya. The cell line is derived from an unknown number of larvae from an unspecified strain of Aedes albopictus mosquitoes. Toward improved utility of the cell line for research in virus transmission, we present an annotated assembly of the C6/36 genome. RESULTS: The C6/36 genome assembly has the largest contig N50 (3.3 Mbp) of any mosquito assembly, presents the sequences of both haplotypes for most of the diploid genome, reveals independent null mutations in both alleles of the Dicer locus, and indicates a male-specific genome. Gene annotation was computed with publicly available mosquito transcript sequences. Gene expression data from cell line RNA sequence identified enrichment of growth-related pathways and conspicuous deficiency in aquaporins and inward rectifier K+ channels. As a test of utility, RNA sequence data from Zika-infected cells were mapped to the C6/36 genome and transcriptome assemblies. Host subtraction reduced the data set by 89%, enabling faster characterization of nonhost reads. CONCLUSIONS: The C6/36 genome sequence and annotation should enable additional uses of the cell line to study arbovirus vector interactions and interventions aimed at restricting the spread of human disease
- …