94 research outputs found

    Strongly Coupled Grand Unification in Higher Dimensions

    Full text link
    We consider the scenario where all the couplings in the theory are strong at the cut-off scale, in the context of higher dimensional grand unified field theories where the unified gauge symmetry is broken by an orbifold compactification. In this scenario, the non-calculable correction to gauge unification from unknown ultraviolet physics is naturally suppressed by the large volume of the extra dimension, and the threshold correction is dominated by a calculable contribution from Kaluza-Klein towers that gives the values for \sin^2\theta_w and \alpha_s in good agreement with low-energy data. The threshold correction is reliably estimated despite the fact that the theory is strongly coupled at the cut-off scale. A realistic 5d supersymmetric SU(5) model is presented as an example, where rapid d=6 proton decay is avoided by putting the first generation matter in the 5d bulk.Comment: 17 pages, latex, to appear in Phys. Rev.

    Threshold Corrections and Gauge Symmetry in Twisted Superstring Models

    Get PDF
    Threshold corrections to the running of gauge couplings are calculated for superstring models with free complex world sheet fermions. For two N=1 SU(2)×U(1)5SU(2)\times U(1)^5 models, the threshold corrections lead to a small increase in the unification scale. Examples are given to illustrate how a given particle spectrum can be described by models with different boundary conditions on the internal fermions. We also discuss how complex twisted fermions can enhance the symmetry group of an N=4 SU(3)×U(1)×U(1)SU(3)\times U(1)\times U(1) model to the gauge group SU(3)×SU(2)×U(1)SU(3)\times SU(2)\times U(1). It is then shown how a mixing angle analogous to the Weinberg angle depends on the boundary conditions of the internal fermions.Comment: easier to Tex version, figures to be sent separatel

    A Detailed Analysis of One-loop Neutrino Masses from the Generic Supersymmetric Standard Model

    Full text link
    In the generic supersymmetric standard model which had no global symmetry enforced by hand, lepton number violation is a natural consequence. Supersymmetry, hence, can be considered the source of experimentally demanded beyond standard model properties for the neutrinos. With an efficient formulation of the model, we perform a comprehensive detailed analysis of all one-loop contributions to neutrino masses.Comment: 27 pages Revtex, no figur

    Bottom-Tau Unification in SUSY SU(5) GUT and Constraints from b to s gamma and Muon g-2

    Full text link
    An analysis is made on bottom-tau Yukawa unification in supersymmetric (SUSY) SU(5) grand unified theory (GUT) in the framework of minimal supergravity, in which the parameter space is restricted by some experimental constraints including Br(b to s gamma) and muon g-2. The bottom-tau unification can be accommodated to the measured branching ratio Br(b to s gamma) if superparticle masses are relatively heavy and higgsino mass parameter \mu is negative. On the other hand, if we take the latest muon g-2 data to require positive SUSY contributions, then wrong-sign threshold corrections at SUSY scale upset the Yukawa unification with more than 20 percent discrepancy. It has to be compensated by superheavy threshold corrections around the GUT scale, which constrains models of flavor in SUSY GUT. A pattern of the superparticle masses preferred by the three requirements is also commented.Comment: 21pages, 6figure

    Yukawa coupling unification and non-universal gaugino mediation of supersymmetry breaking

    Full text link
    The requirement of Yukawa coupling unification highly constrains the SUSY parameter space. In several SUSY breaking scenarios it is hard to reconcile Yukawa coupling unification with experimental constraints from B(b->s gamma) and the muon anomalous magnetic moment a_mu. We show that b-tau or even t-b-tau Yukawa unification can be satisfied simultaneously with b->s gamma and a_mu in the non-universal gaugino mediation scenario. Non-universal gaugino masses naturally appear in higher dimensional grand unified models in which gauge symmetry is broken by orbifold compactification. Relations between SUSY contributions to fermion masses, b->s gamma and a_mu which are typical for models with universal gaugino masses are relaxed. Consequently, these phenomenological constraints can be satisfied simultaneously with a relatively light SUSY spectrum, compared to models with universal gaugino masses.Comment: 20 pages, 8 figures. References added. A copy of the paper with better resolution figures can be found at http://www.hep.fsu.edu/~balazs/Physics/Papers/2003

    Broad-spectrum in vitro activity of macrophage infectivity potentiator inhibitors against Gram-negative bacteria and Leishmania major

    Get PDF
    Background The macrophage infectivity potentiator (Mip) protein, which belongs to the immunophilin superfamily, is a peptidyl-prolyl cis/trans isomerase (PPIase) enzyme. Mip has been shown to be important for virulence in a wide range of pathogenic microorganisms. It has previously been demonstrated that small-molecule compounds designed to target Mip from the Gram-negative bacterium Burkholderia pseudomallei bind at the site of enzymatic activity of the protein, inhibiting the in vitro activity of Mip. Objectives In this study, co-crystallography experiments with recombinant B. pseudomallei Mip (BpMip) protein and Mip inhibitors, biochemical analysis and computational modelling were used to predict the efficacy of lead compounds for broad-spectrum activity against other pathogens. Methods Binding activity of three lead compounds targeting BpMip was verified using surface plasmon resonance spectroscopy. The determination of crystal structures of BpMip in complex with these compounds, together with molecular modelling and in vitro assays, was used to determine whether the compounds have broad-spectrum antimicrobial activity against pathogens. Results Of the three lead small-molecule compounds, two were effective in inhibiting the PPIase activity of Mip proteins from Neisseria meningitidis, Klebsiella pneumoniae and Leishmania major. The compounds also reduced the intracellular burden of these pathogens using in vitro cell infection assays. Conclusions These results indicate that Mip is a novel antivirulence target that can be inhibited using small-molecule compounds that prove to be promising broad-spectrum drug candidates in vitro. Further optimization of compounds is required for in vivo evaluation and future clinical applications

    Neutralino Dark Matter, b-tau Yukawa Unification and Non-Universal Sfermion Masses

    Full text link
    We study the implications of minimal non-Universal Boundary Conditions in the sfermion Soft SUSY Breaking (SSB) masses of mSUGRA. We impose asymptotic b-tau Yukawa coupling Unification and we resort to a parameterization of the deviation from Universality in the SSB motivated by the multiplet structure of SU(5) GUT. A set of cosmo-phenomenological constraints, including the recent results from WMAP, determines the allowed parameter space of the models under consideration. We highlight a new coannihilation corridor where neutralino-sbottom and neutralino-tau sneutrino-stau coannihilations significantly contribute to the reduction of the neutralino relic density.Comment: 38 pages, 27 Figures, Latex; Version accepted for publication in PR

    Colliders and Cosmology

    Full text link
    Dark matter in variations of constrained minimal supersymmetric standard models will be discussed. Particular attention will be given to the comparison between accelerator and direct detection constraints.Comment: Submitted for the SUSY07 proceedings, 15 pages, LaTex, 26 eps figure

    CP Violation in Supersymmetric U(1)' Models

    Full text link
    The supersymmetric CP problem is studied within superstring-motivated extensions of the MSSM with an additional U(1)' gauge symmetry broken at the TeV scale. This class of models offers an attractive solution to the mu problem of the MSSM, in which U(1)' gauge invariance forbids the bare mu term, but an effective mu parameter is generated by the vacuum expectation value of a Standard Model singlet S which has superpotential coupling of the form SH_uH_d to the electroweak Higgs doublets. The effective mu parameter is thus dynamically determined as a function of the soft supersymmetry breaking parameters, and can be complex if the soft parameters have nontrivial CP-violating phases. We examine the phenomenological constraints on the reparameterization invariant phase combinations within this framework, and find that the supersymmetric CP problem can be greatly alleviated in models in which the phase of the SU(2) gaugino mass parameter is aligned with the soft trilinear scalar mass parameter associated with the SH_uH_d coupling. We also study how the phases filter into the Higgs sector, and find that while the Higgs sector conserves CP at the renormalizable level to all orders of perturbation theory, CP violation can enter at the nonrenormalizable level at one-loop order. In the majority of the parameter space, the lightest Higgs boson remains essentially CP even but the heavier Higgs bosons can exhibit large CP-violating mixings, similar to the CP-violating MSSM with large mu parameter.Comment: 29 pp, 3 figs, 2 table
    • …
    corecore