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Threshold corrections to the running of gauge couplings are calculated for superstring
models with free complex world sheet fermions. For two N=1 SU(2) x U(1)® models, the
threshold corrections lead to a small increase in the unification scale. Examples are given to
illustrate how a given particle spectrum can be described by models with different boundary
conditions on the internal fermions. We also discuss how complex twisted fermions can
enhance the symmetry group of an N=4 SU(3) x U(1) x U(1) model to the gauge group
SU(3) x SU(2) x U(1). It is then shown how a mixing angle analogous to the Weinberg

angle depends on the boundary conditions of the internal fermions.

1. Introduction

The unification of gauge coupling constants is a necessary consequence of string theory.

At tree level, the gauge couplings have simple relations to the string coupling constant. In
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higher orders of perturbation theory, this relation holds only at the Planck mass. Below this
energy, the gauge couplings evolve as determined by the renormalization group equations.
Threshold effects [1] can also modify the tree level relation and shift the unification scale.
Although the effect of thresholds is small in grand unified field theories, the threshold
corrections can be quite large in string theories [2-7] because there is an infinite tower of

massive states, all of which contribute.

In this paper, we calculate threshold corrections in four-dimensional critical super-
string models written in terms of free fermions with twisted boundary conditions. Complex
fermions are useful for studying theories with chiral space-time fermions and for probing
the structure of gauge symmetries. Here, we adapt the background field method [5,8] for
calculating string thresholds to twisted models in the framework of type II theories. Al-
though a phenomenologically realistic type II model has not yet been found, it provides a
more economical construction for using the techniques of low energy string phenomenology.
Calculations of thresholds in heterotic models[5-13] can be made large enough to lower the
unification scale to an acceptable energy. This is achieved by fine tuning the many free
moduli parameters of the theory. A desirable feature of type II strings is that there is less

freedom to adjust the parameters of the theory.

In sect. 2, we give a general discussion of the background field method for running
couplings in twisted models, emphasizing models with higher level Kac-Moody currents. In
sect. 3, we calculate the threshold corrections for two twisted chiral models with SU(2) x

U(1)® gauge symmetry. These two models have the same massless particle spectrum but
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different boundary conditions on the internal fermions. This shows how different boundary
conditions on the internal fermions affect the thresholds. In sect. 4, we investigate the
relationship between the boundary conditions on the internal fermions and the ratio of the
field theory couplings at the Plank mass[14]. Specifically, it will be shown how the twisted
boundary conditions can enhance the symmetry group of an N=4 SU(3) x U(1) x U(1)
model to SU(3) x SU(2) x U(1). We then determine a mixing angle analogous to the

Weinberg angle of the standard model.

2. Background field calculation

The tree level relation between gauge couplings is [15]:

4 4
S R (2.1)
9a 9str

where x, is the level of Kac-Moody Algebra = N for SU(N). The factor of 2 is present
because we choose a field theory normalization for the longest roots equal to 1. This
relation is determined by comparing the scattering amplitudes (e.g. three-point gauge
boson vertex) for the low energy string theory (massless modes) to field theory. The tree
amplitudes are identical if one makes this identification, which holds at the Planck mass.
We now want to calculate how this relation changes when higher order corrections and
threshold effects are considered. This involves using the background field method [5,8,17]
to find the threshold corrections. Since we are interested in models with chiral space-time

fermions, we consider models with complex twisted fermions.
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The background field method involves describing the effective action of the quantum

gauge field as an effective action of a string propagating in a classical background gauge

field:

(A =T[X" =0,9" =0,4;]. (2.2)
The effective action will now include contributions from the massive modes of the string.
XH, UF = ( means that there are no external string states. In addition, since the gauge
fields are classical, they do not circulate in loops. In other words, the classical gauge fields

only exist as external states. Polchinski[16] derived a formula for the one-loop correction

to (2.1):

1 d?
L[X*=0,¥"=0,40] = /d‘lx(—@Fl‘ij““”) + / T—;Z + ... (2.3)

a

where Z is the partition function (one loop with no external states) of the string in the

presence of a background gauge field. 7 = 7 + ¢7y are the coordinates on the torus. The

1
4g2

first term in (2.3) is simply the classical action of the gauge field and — is the tree
approximation for the gauge coupling. The second term, which is the one-loop correction
to the tree level result, can be shown to be equivalent to a one-loop two point string

amplitude where the string vertex operator for the emission of a gauge boson is modified

—1F,, X" provided that A, satisfies

by making the substitution e, e X3 - 4 = 5

the classical equations of motion. The first order correction to the field theory coupling

constants is then given by the the coefficient of the —iFinerm in the one-loop two point
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background gauge field amplitude. We now outline this method for models containing

twisted fermions.

Type II 4-dimensional string models can contain chiral space-time fermions [18-21] if
some of the internal coordinates take values on a shifted lattice v2a'p € Z 4+ v. These

complex twisted fermions satisfy the following boundary conditions:

(¥ 2) = —TVPp(z) ; P(ePTz) = —eTPT(2) (24)

where v is real. The space-time fermions are real, either Neveu-Schwarz or Ramond. They

are given by:

Pr(z) = Y preTTTE gtz =Y gk (2.5)

r€Z+% ncz

for Neveu-Schwarz and Ramond respectively. Twisted models differ from untwisted models

in that internal fermions can be defined by the following for any value of A

Viz)= Y WleTTTE g i) = Y gl (2.6)

reZ+X reZ—A

where \ = % —vand fi = f_,. v =1/2is the Ramond case and v = 0 the Neveu-Schwarz

case.

We consider 4-dimensional type II models in the light-cone description. Here, the left

and right movers can each be described by two bosonic and twenty fermionic fields. The
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partition function without the zero modes p is given by

Z = H Z B)Tralg™ =4 gh =4 (emm)en ]

n ; /2 i 1/2
-1l > cto (o) I (vﬂ ['Z] <0|q>) 11 (19 m <0|q>) 27)

p m
XIIﬁIQIOMII [ IOM
=1
where the prime on the Hamiltonian denotes the omission of the bosonic zero modes.
In this formalism, the partition function is a sum over the sectors generated by p, =
(pa; po) € Q2. Each sector o contains n + n' real fermions and m + m' complex fermions.

Po is a (n 4+ n' +m + m') dimensional vector which describes the boundary conditions of

the fermions for each sector:

Po = 2(V1, e Vni V1, ooV V1, eVt V1, oVt ) (2.8)

c(a, B) = bae(a, 3) are phases for the (e7'™)?#'I" projections. F is a vector whose compo-
nents are the operators F; =3 . .\ fﬂfir : for complex fermions and 2211/2 b‘isbg or

T d‘ind{; for real NS or R fermions respectively.

n m n! m/
F=2) vFf+2) vF} -2) vFff-2) vFf. (2.9)
j=1 j=1 j=1 j=1

In addition, the factor H;:Ol N ( k= the number of generators) is the number of sectors

! !

where the order, NV, is defined by aVe = ¢ = (D)™ ()™ (D)™ ;(1)™ ) and « is a vector

whose components are given by

o= (2™ PR R L) (2.10)



The generalized Jacobi theta functions are given by

(vr) = Y eimrinte/2)? midnlnt o (/) imon?

o7
K ncz
1] [IO] (v|T) = Z —in7(n+p/2)? i2n(n+p/2)(v+0[2) ,~imph/2 (2.11)
H ncz
2””, q= G_ZWiF,T =71 + 1719, and T = 7y — i73. Note that this differs from that

with ¢ = ¢
given in [18] because the left movers are now functions of q rather that ¢.

The one-loop two point amplitude contribution to the effective lagrangian for Aj

background is :
(2.12)

L'(AY) = H/ivl;c(a,ﬁ)/ (;ZTZ;TTQ[AV“(L1)AV“(1,1)(e_i”)pﬁ'F]

where the sum over sectors corresponds to a generalized GSO projection[18]. The closed

string propagator 1s

_ 1 dde Lo—%zLo—% (2.13)
A Jiz<1 12|
The Hamiltonian Ly and associated Virasoro generators are given by:
Li= Y (r— U N A 41 > (A— 3)25n 0. (2.14)
2 4 2 '
rezZ—+x
kX (22 _,

Recall that the background field method involves making the substitution e,e

A, (z) in the vertex operator for a gauge boson provided that A, (z) satisfies the equation of

motion 9, F*¥ = 0. The vertex operator for a gauge boson, %% ¢-b%, |0 >, is constructed in
2 2
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part from the Kac-Moody currents of (2.15) and (2.16). In models with complex fermions,
such as the two chiral models that are discussed in sect. 3, the affine algebra is constructed
for a particular gauge group. For a model with complex fermions and an SU(2) x U(1)®

gauge symmetry, the currents are given by:

JHz)=) Tz = —%fabcz/}”(z)@bc(z) (2.15)

nez

where fq5. are the structure constants of SU(2) and 3 < a,b, ¢ < 5.

The U(1) currents are:

T(2) = PP ) 4, (2.16)

for 6 <a <10,1 <5 <5, and no sum on j. The zero modes of these currents generate

the gauge symmetry. The vertex operator for an SU(2) gauge boson is:

V(kye,z,2) =[Lk - P (2)0 " (2) — L fapctd ™ ()07 ¢ (2)]
(2.17)
€ [l'ggXR(g) 1 R(E)k . ¢R(§)]eik.X(z,2)

2

Here, all the fermionic oscillators are real. On the other hand, the vertex operators for the

U(1) gauge bosons are constructed from the corresponding Kac-Moody currents :

Velk,e,z,2) =[gk - () ()4 M ()01 (2) ]
(2.18)
e [iz0Xr(2) — Lo B(2)k - B (2)]eh X (=D

2

where v; in the current from (2.16) is zero. The vertex operator also contains the bosonic

fields given by
XH(z,z)=a" + p—u(lnz +Inz)+ 3 Z l07“27_" + 3 Z la“é_"
’ 44 2 n " 2 n "
n#0 n#0 (2.19)
(X{(2) + X{(2))

N | —



It is only necessary to evaluate one component of a non-abelian subgroup at a time. For
example, for SU(2), one would look at only one of the three gauge bosons . Due to gauge
invariance, it doesn’t matter which one is selected. For a constant F},, corresponding to a
given component of subgroup a, the resulting background field vertex is

VAEWN(z2) = §Fu {J(2)[2X" (2, 2)20XR (2) — 0" (2) ™ (2)]
(2.20)

— i ()t (2)][20X ] (2)]}

where the gauge currents are given in (2.15) and (2.16). Using operator methods one can

rewrite (2.12) as

1 d
H—Z 2/ p4/d27'/ d*v
] Ni (2m)* Jr 0<Imv<Imr (2.21)
x Tra[V“(Zaf)V“(la D A O

where z=e?™", ¢ = €™, and the integration is restricted to the fundamental region T.
Performing the trace:
TraV(z, 2V (1, L)ghom 2ghom /2 (eimpen 7]

b Fu FyTrg g~ 2gh 12 mim e F]

< (T4 (2) T (D)[(2X " (2, 2)20X 7 (2)2X (1, 1)OX (1)) + ($H(2)8” (2)P (1) (1))]

— (W (2t ()PP (L)t (1) (20X (2)0X 7 (1))}
(2.22)

where the two point correlation function on a torus is defined by:

) L TTQ[A(Z72)B(w7uj)qLo—l/Zqio—l/Z(e—iﬂ)pﬁ.F]
(A(z,2)B(w,w)) = Tro[gho172gho 172 (c—imyos ] (2.23)

The last term is a total derivative and drops out after using the generalized Gauss’s theo-
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rem. After performing the p integration we have

1 1 d*r [ d*v
) =t s [ o) [ S8 [ 220w
l

.
a,B L2

< 2(T()T(L))2 5 — (X(2)20X (L) 5] Tralghe Pqho = (e im)re ]

(2.24)

The fermionic current gives rise to a gauge independent(apart from k;) part and a gauge

dependent part:

(J(2) T (D)ap = —kalz L )*log01(z,q) + (J5 J5) (2.25)

9z
Since k, 1s one, the first part will shift all the groups by the same amount and can thus be

absorbed into a redefinition of the string coupling constant. Using the explicit expressions

for the currents, their correlation functions are found to be:

a a 1 a a pg
T3 K)o = S Frafi2alog H (Ol (2.20)
Jé]
for the SU(2) currents(no sum on a) and
“ ra Pl
(Jo I >a,ﬂ = 2qlog [p]‘ ] (0[q) (2.27)
Jé]

for the U(1) currents(1 < j <5).

In the SU(3) x U(1) x U(1) model presented in sect. 4, the currents are given by:
T (=) = J"(2) + ¢"(2)

) = G 1 i) =i P (2.28)

TN = =l FEFE) 480 5 T2 = [ ) 4]

Sl
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where 3 < a,b,¢ <10, 2 <1,5 <4, and the strucure constants of SU(3) are normalized so
Cy =2.

The correlation function of the SU(3) current is(no sum on a):

C

1 a a (8} a a * p{ﬂ
S feafea2qlog [I;c] (0[q) + A AY; " 2q1og 6 [pj] (0[q) - (2.29)

(T8 T )as = 5
B B

Performing the v integration on the gauge dependent part,we have:

! a 1 2 1 1 dZT a 7a
) =4 o [T St [ a0 ag)
l

o E
_ 1
(7]

d B
2¢—1 o
X qdq og — g

—_
N
Y
N

N

|

TN

|

| — |

el
N N

—_
N
=)
N

N

NI
~
-~
h
oS-
|
NI
|
h
oS~

L —%(e—iﬂ)pﬁ~F]

(2.30)
Now using the expression for the partition function for twisted fermions (2.4), we see that

the one-loop two point background gauge field contribution to the effective lagrangian is

Cag =t | T 1B (g ) + V) (2.31)

HY 1672 T2

where Y is the gauge independent part and

Bata.d) =[] 5 Yo eto =g L (ﬁ[p?]w ['03]@) Juta) ) 7

n(q)
n . 1/2 ., . 1/2 ., . . .

P gl P G Ph|

SUCHIDE QDI SH N T

The first order correction to the field theory coupling is given by the coefficient of

(2.32)

— iFiV in the one-loop two point background gauge field amplitude (2.31). In this analysis,
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we use the type II string normalization of €'y, = 2. To compare this result with field
theory, which uses a normalization of C'y, = 1, we must multiply this result by a factor
U /02, = x,/2. Here, ¥? is the length squared of the longest root in the subgroup and

x4 is the level of the Kac-Moody algebra. Then, following ref.[5], we get an equation for

the DR couplings

1 a 2 ba A(1,
= T2 P, 2
27

2.33
ai(p) agur 4 ( )

The gauge independent part has been absorbed into a redefinition of the string coupling

by

1 47 Y
= — 4+ — 2.34
QGUT ggtr 4m ( )

where Y = [}, dj—;Y’ and o, = g2/4w. The massive string contributions are given by the

thresholds Ag:

So= [ TleButen) - b, (2.35)

T2

The b, are the field theory 5 functions given by|[22]

be = =5 Trv(Q) + %Tm(@?) + éTrs(Q?) (2.36)

Here, the traces are over two-component fermions and real scalars(in field theory normal-

ization). The massless contribution from the string is given by
b, = lirr(l) ,Ba(q,q) (2.37)
q—)'

and should equal the field theory result. This provides a consistency check for the string

calculation. One can facilitate the numerical integration by making a change of variables:
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o = Im7 =1/7). Since By(—71,72) = B(m1,72)*, the imaginary part drops out leaving:

.5 0 d !
A, = —2Re/ dﬁ/ O (20 Ba(71,75) — ba]. (2.38)
0 1/3/1=r2 T2
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3. Threshold calculation for two N=1 SU(2) x U(1)" chiral models

We now calculate the threshold corrections for two twisted models with SU(2) x U(1)®
symmetry. In both cases, the thresholds increase the unification scale by a very small

amount.

Example 1
A model with SU(2) x U(1)° gauge symmetry [23,19] can be described by three generators
bo,bi,by : Ny = N7 =2 : No=4: K=2. The sixteen sectors of the model can be determined

from the vectors p;, describing the generators:

P, = ((0)%:(0)%: (1)1(0)%5 (0)*(1)%) (3.1)
pr = ((0)"°(1)%:(1/2)% (0)*(D*(0)*(1)*5 (1/2)")

Figure 1 illustrates the boundary conditions for the sectors of the model. The massless

states satisfy the following criteria:

(1): For the states to survive the projections, we must have:

e P Fo = e(a, b)) o (3.2)
(2): The left and right movers must each have a mass eigenvalue of 0:
a'mp?|S >=(Lf —1/2)|S>=0 ; o'mg’*|S>=(L§ —1/2)|S>=0 (3.3)

The massless states come from the sectors: by, by, , biba, b3, b1b3, b3, b1b5. For g =
SU(2) x U(1)%, they are:
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