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Threshold corrections to the running of gauge couplings are calculated for superstring

models with free complex world sheet fermions. For two N=1 SU(2) � U(1)5 models, the

threshold corrections lead to a small increase in the uni�cation scale. Examples are given to

illustrate how a given particle spectrum can be described by models with di�erent boundary

conditions on the internal fermions. We also discuss how complex twisted fermions can

enhance the symmetry group of an N=4 SU(3) � U(1) � U(1) model to the gauge group

SU(3) � SU(2) � U(1). It is then shown how a mixing angle analogous to the Weinberg

angle depends on the boundary conditions of the internal fermions.

1. Introduction

The uni�cation of gauge coupling constants is a necessary consequence of string theory.

At tree level, the gauge couplings have simple relations to the string coupling constant. In
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higher orders of perturbation theory, this relation holds only at the Planck mass. Below this

energy, the gauge couplings evolve as determined by the renormalization group equations.

Threshold e�ects [1] can also modify the tree level relation and shift the uni�cation scale.

Although the e�ect of thresholds is small in grand uni�ed �eld theories, the threshold

corrections can be quite large in string theories [2-7] because there is an in�nite tower of

massive states, all of which contribute.

In this paper, we calculate threshold corrections in four-dimensional critical super-

string models written in terms of free fermions with twisted boundary conditions. Complex

fermions are useful for studying theories with chiral space-time fermions and for probing

the structure of gauge symmetries. Here, we adapt the background �eld method [5,8] for

calculating string thresholds to twisted models in the framework of type II theories. Al-

though a phenomenologically realistic type II model has not yet been found, it provides a

more economical construction for using the techniques of low energy string phenomenology.

Calculations of thresholds in heterotic models[5-13] can be made large enough to lower the

uni�cation scale to an acceptable energy. This is achieved by �ne tuning the many free

moduli parameters of the theory. A desirable feature of type II strings is that there is less

freedom to adjust the parameters of the theory.

In sect. 2, we give a general discussion of the background �eld method for running

couplings in twisted models, emphasizing models with higher level Kac-Moody currents. In

sect. 3, we calculate the threshold corrections for two twisted chiral models with SU(2)�

U(1)5 gauge symmetry. These two models have the same massless particle spectrum but
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di�erent boundary conditions on the internal fermions. This shows how di�erent boundary

conditions on the internal fermions a�ect the thresholds. In sect. 4, we investigate the

relationship between the boundary conditions on the internal fermions and the ratio of the

�eld theory couplings at the Plank mass[14]. Speci�cally, it will be shown how the twisted

boundary conditions can enhance the symmetry group of an N=4 SU(3) � U(1) � U(1)

model to SU(3) � SU(2) � U(1). We then determine a mixing angle analogous to the

Weinberg angle of the standard model.

2. Background �eld calculation

The tree level relation between gauge couplings is [15]:

4�

g2a
= 2xa

4�

g2str
(2:1)

where xa is the level of Kac-Moody Algebra = N for SU(N). The factor of 2 is present

because we choose a �eld theory normalization for the longest roots equal to 1. This

relation is determined by comparing the scattering amplitudes (e.g. three-point gauge

boson vertex) for the low energy string theory (massless modes) to �eld theory. The tree

amplitudes are identical if one makes this identi�cation, which holds at the Planck mass.

We now want to calculate how this relation changes when higher order corrections and

threshold e�ects are considered. This involves using the background �eld method [5,8,17]

to �nd the threshold corrections. Since we are interested in models with chiral space-time

fermions, we consider models with complex twisted fermions.
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The background �eld method involves describing the e�ective action of the quantum

gauge �eld as an e�ective action of a string propagating in a classical background gauge

�eld:

�[Aa�] = �[X� = 0;	� = 0; Aa�] : (2:2)

The e�ective action will now include contributions from the massive modes of the string.

X�, 	� = 0 means that there are no external string states. In addition, since the gauge

�elds are classical, they do not circulate in loops. In other words, the classical gauge �elds

only exist as external states. Polchinski[16] derived a formula for the one-loop correction

to (2.1):

�[X� = 0;	� = 0; Aa�] =

Z
d4x(� 1

4g2a
F a��F

a��) +

Z
d2�

�2
Z+ ::: (2:3)

where Z is the partition function (one loop with no external states) of the string in the

presence of a background gauge �eld. � = �1 + i�2 are the coordinates on the torus. The

�rst term in (2.3) is simply the classical action of the gauge �eld and � 1
4g2a

is the tree

approximation for the gauge coupling. The second term, which is the one-loop correction

to the tree level result, can be shown to be equivalent to a one-loop two point string

amplitude where the string vertex operator for the emission of a gauge boson is modi�ed

by making the substitution ��e
ik�X(z;�z) ! A� = �1

2
F��X

� provided that A� satis�es

the classical equations of motion. The �rst order correction to the �eld theory coupling

constants is then given by the the coe�cient of the �1
4
F 2
��term in the one-loop two point
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background gauge �eld amplitude. We now outline this method for models containing

twisted fermions.

Type II 4-dimensional string models can contain chiral space-time fermions [18-21] if

some of the internal coordinates take values on a shifted lattice
p
2�0p 2 Z + �. These

complex twisted fermions satisfy the following boundary conditions:

 (e2�iz) = �e2�i� (z) ; ~ (e2�iz) = �e�2�i� ~ (z) (2:4)

where � is real. The space-time fermions are real, either Neveu-Schwarz or Ramond. They

are given by:

 �(z) =
X

r2Z+ 1

2

 �r z
�r� 1

2 ;  �(z) =
X
n2Z

 �nz
�n� 1

2 (2:5)

for Neveu-Schwarz and Ramond respectively. Twisted models di�er from untwisted models

in that internal fermions can be de�ned by the following for any value of �

 i(z) =
X

r2Z+�

 irz
�r� 1

2 ; ~ i(z) =
X

r2Z��

~ irz
�r� 1

2 (2:6)

where � = 1
2
� � and fyr =

~f�r. � = 1=2 is the Ramond case and � = 0 the Neveu-Schwarz

case.

We consider 4-dimensional type II models in the light-cone description. Here, the left

and right movers can each be described by two bosonic and twenty fermionic �elds. The
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partition function without the zero modes p is given by

Z =

k�1Y
l=0

1

Nl

X
�;�

c(�; �)Tr�[q
L0

0
�

1

2 �q
�L0

0
�

1

2 (e�i�)���F ]

=
Y
l

1

Nl

X
�;�

c(�; �)j�(q)j�24
nY
i=1

 
#

"
�i�
�i�

#
(0jq)

!1=2 n0Y
i=1

 
#

"
��i�
��i�

#
(0j�q)

!1=2

�
mY
i=1

#

"
�i�
�i�

#
(0jq)

m0Y
i=1

�#

"
�i�
�i�

#
(0j�q)

(2:7)

where the prime on the Hamiltonian denotes the omission of the bosonic zero modes.

In this formalism, the partition function is a sum over the sectors generated by �� �

(��; ���) 2 
. Each sector � contains n+ n0 real fermions and m+m0 complex fermions.

�� is a (n+ n0 +m+m0) dimensional vector which describes the boundary conditions of

the fermions for each sector:

�� = 2(�1; :::�n; �1; :::�m; �1; :::�n0; �1; :::�m0) : (2:8)

c(�; �) = ���(�; �) are phases for the (e
�i�)���F projections. F is a vector whose compo-

nents are the operators Fj =
P

r2z+� : f
j
r
~f j
�r : for complex fermions and

P1

s=1=2 b
j
�sb

j
s or

P
1

1 d
j
�nd

j
n for real NS or R fermions respectively.

�� � F = 2

nX
j=1

�jF
L
j + 2

mX
j=1

�jF
L
j � 2

n0X
j=1

�jF
R
j � 2

m0X
j=1

�jF
R
j : (2:9)

In addition, the factor
Qk�1
l=0 Nl ( k= the number of generators) is the number of sectors

where the order, N� is de�ned by �N� = � = ((1)n; (1)m; (1)n
0

; (1)m
0

) and � is a vector

whose components are given by

� = (e2�i� ; :::; e2�i� ; :::; e2�i� ; :::; e2�i� ; :::) (2:10)
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The generalized Jacobi theta functions are given by

#

�
�

�

�
(�j� ) =

X
n2Z

ei��(n+�=2)
2

e�i2�(n+�=2)(�+�=2)ei���=2

�#

�
��

��

�
(�j��) =

X
n2Z

e�i��� (n+��=2)2ei2�(n+��=2)(�+��=2)e�i�����=2 (2:11)

with q = e2�i� , �q = e�2�i�� ,� = �1 + i�2, and �� = �1 � i�2. Note that this di�ers from that

given in [18] because the left movers are now functions of q rather that �q.

The one-loop two point amplitude contribution to the e�ective lagrangian for Aa�

background is :

L0(Aa�) =
Y
l

1

N l

X
�;�

c(�; �)

Z
d4p

(2�)4
Tr�[�V

a(1; 1)�V a(1; 1)(e�i�)�� �F ] (2:12)

where the sum over sectors corresponds to a generalized GSO projection[18]. The closed

string propagator is

� =
1

4�

Z
jzj�1

dzd�z

jzj2 z
L0�

1

2 �z
�L0�

1

2 : (2:13)

The Hamiltonian L0 and associated Virasoro generators are given by:

Ln =
X

r2Z+�

(r � n

2
) : ~fn�rfr : +

1

4

X
(�� 1

2
)2�n:0 : (2:14)

Recall that the background �eld method involves making the substitution ��e
ik�X(z;�z) !

A�(x) in the vertex operator for a gauge boson provided that A�(x) satis�es the equation of

motion @�F
�� = 0: The vertex operator for a gauge boson, bLa

�
1

2

��bR
�

1

2

j0 >, is constructed in
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part from the Kac-Moody currents of (2.15) and (2.16). In models with complex fermions,

such as the two chiral models that are discussed in sect. 3, the a�ne algebra is constructed

for a particular gauge group. For a model with complex fermions and an SU(2) � U(1)5

gauge symmetry, the currents are given by:

Ja(z) =
X
n2Z

Janz
�z = � i

2
fabc 

b(z) c(z) (2:15)

where fabc are the structure constants of SU(2) and 3 � a; b; c � 5.

The U(1) currents are:

Ja(z) =: f j(z) ~f j (z) : +�j (2:16)

for 6 � a � 10, 1 � j � 5, and no sum on j. The zero modes of these currents generate

the gauge symmetry. The vertex operator for an SU(2) gauge boson is:

V a(k; �; z; �z) =[1
2
k �  L(z) La(z) � i

2
fabc 

Lb(z) Lc(z)]

� � [i�z �@XR(�z)� 1
2
 R(�z)k �  R(�z)]eik�X(z;�z)

(2:17)

Here, all the fermionic oscillators are real. On the other hand, the vertex operators for the

U(1) gauge bosons are constructed from the corresponding Kac-Moody currents :

V a(k; �; z; �z) =[1
2
k �  L(z) La(z)+ :  Lj(z) ~ Lj (z) :]

� � [i�z �@XR(�z)� 1
2
 R(�z)k �  R(�z)]eik�X(z;�z)

(2:18)

where �j in the current from (2.16) is zero. The vertex operator also contains the bosonic

�elds given by

X�(z; �z) = x� +
p�

4i
(ln z + ln �z) +

i

2

X
n6=0

1

n
~��nz

�n +
i

2

X
n6=0

1

n
��n�z

�n

=
1

2
(X�

L (z) +X
�
R(�z))

(2:19)
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It is only necessary to evaluate one component of a non-abelian subgroup at a time. For

example, for SU(2), one would look at only one of the three gauge bosons . Due to gauge

invariance, it doesn't matter which one is selected. For a constant F�� corresponding to a

given component of subgroup a, the resulting background �eld vertex is

V a[F�� ](z; �z) =
i
4
F��

�
Ja(z)[2X�(z; �z)�z �@X�

R(�z)�  R�(�z) R�(�z)]

� i[ L�(z) La(z)][�z �@X�
R(�z)]

	 (2:20)

where the gauge currents are given in (2.15) and (2.16). Using operator methods one can

rewrite (2.12) as:

L0(Aa�) =
Y
l

1

Nl

X
�;�

c(�; �)�2
Z

d4p

(2�)4

Z
�

d2�

Z
0�Im��Im�

d2�

� Tr�[V
a(z; �z)V a(1; 1)qL0�1=2�q

�L0�1=2(e�i�)�� �F ]

(2:21)

where z=e2�i� , q = e2�i� , and the integration is restricted to the fundamental region �.

Performing the trace:

Tr�[V
a(z; �z)V a(1; 1)qL0�1=2�q

�L0�1=2(e�i�)�� �F ] =

� 1
16
F��F��Tr�[q

L0�1=2�q
�L0�1=2(e�i�)���F ]

� fhJa(z)Ja(1)i[h2X�(z; �z)�z �@XR�(�z)2X�(1; 1)�@XR�(1)i + h �(�z) � (�z) �(1) �(1)i]

� h L�(z) La(z) L�(1) La(1)ih�z �@XR�(�z)�@XR�(1)ig
(2:22)

where the two point correlation function on a torus is de�ned by:

hA(z; �z)B(w; �w)i � Tr�[A(z; �z)B(w; �w)q
L0�1=2�q

�L0�1=2(e�i�)���F ]

Tr�[qL0�1=2�q
�L0�1=2(e�i�)���F ]

(2:23)

The last term is a total derivative and drops out after using the generalized Gauss's theo-
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rem. After performing the p integration we have

L0(Aa�) = 1
4
F 2
��

1

16�2

Y
l

1

Nl

X
�;�

c(�; �)

Z
�

d2�

�2

Z
d2�

�2
hJa(z)Ja(1)i�;�

� 2[h	(�z)	(1)i2�;� � hXR(�z)�z �@XR(1)i2�;� ]Tr�[qL
0

0
�1=2�q

�L0

0
�1=2(e�i�)�� �F ]

: (2:24)

The fermionic current gives rise to a gauge independent(apart from ki) part and a gauge

dependent part:

hJa(z)Ja(1)i�;� = �ka(z @
@z

)2 log �1(z; q) + hJa0 Ja0 i : (2:25)

Since ka is one, the �rst part will shift all the groups by the same amount and can thus be

absorbed into a rede�nition of the string coupling constant. Using the explicit expressions

for the currents, their correlation functions are found to be:

hJa0 Ja0 i�;� =
1

2
facdf

a
cd2q log �

"
�c�
�c�

#
(0jq) (2:26)

for the SU(2) currents(no sum on a) and

hJa0 Ja0 i�;� = 2q log �

"
�j�

�
j
�

#
(0jq) (2:27)

for the U(1) currents(1 � j � 5).

In the SU(3) �U(1) �U(1) model presented in sect. 4, the currents are given by:

Ja(z) = �Ja(z) + qa(z)

�Ja(z) = � i

2
fabcb

b(z)bc(z) ; qq(z) = i�aij : f
i(z) ~f j (z) : (2:28)

J11(z) =
1p
3
[: f i(z) ~f i(z) : +3�2] ; J12(z) = [: f1(z) ~f1(z) : +�1]
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where 3 � a; b; c � 10, 2 � i; j � 4, and the strucure constants of SU(3) are normalized so

C = 2.

The correlation function of the SU(3) current is(no sum on a):

hJa0 Ja0 i�;� =
1

2
facdf

a
cd2q log �

"
�c�
�c�

#
(0jq) + �aij�

a
ij
�2q log �

"
�j�

�
j
�

#
(0jq) : (2:29)

Performing the � integration on the gauge dependent part,we have:

L0(Aa�) = 1
4
F 2
��

1

16�2

Y
l

1

Nl

X
�;�

c(�; �)

Z
�

d2�

�2
2hJa0 Ja0 i

� 2�q
d

d�q
log

0
BBB@
�
�#

�
��1�
��1
�

�
(�q)

� 1

2

�
�#

�
��2�
��2
�

�
(�q)

� 1

2

�(�q)

1
CCCATr�[q

L0

0
�

1

2 �q
�L0

0
�

1

2 (e�i�)���F ]

(2:30)

Now using the expression for the partition function for twisted fermions (2.4), we see that

the one-loop two point background gauge �eld contribution to the e�ective lagrangian is

L0(Aa�) = �1
4
F 2
��

1

16�2

Z
�

d2�

�2
[2Ba(q; �q) + Y 0] (2:31)

where Y 0 is the gauge independent part and

Ba(q; �q) = �
Y
l

1

Nl

X
�;�

c(�; �)
j�(q)j�22
�(q)

2�q
d

d�q

0
@
 
�#

"
��1�
��1�

#
(�q)�#

"
��2�
��2�

#
(�q)

! 1

2 �
�(�q)

1
A hJa0 Ja0 i

�
nY
j=1

 
#

"
�j�

�
j
�

#
(q)

!1=2 n0Y
j=3

 
�#

"
��j�

��j�

#
(�q)

!1=2 mY
j=1

#

"
�j�

�
j
�

#
(q)

m0Y
j=1

�#

"
��j�

��j�

#
(�q)

(2:32)

The �rst order correction to the �eld theory coupling is given by the coe�cient of

�1
4
F 2
�� in the one-loop two point background gauge �eld amplitude (2.31). In this analysis,
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we use the type II string normalization of C = 2. To compare this result with �eld

theory, which uses a normalization of C = 1, we must multiply this result by a factor

	2
FT =	

2
str = xa=2. Here, 	

2 is the length squared of the longest root in the subgroup and

xa is the level of the Kac-Moody algebra. Then, following ref.[5], we get an equation for

the DR couplings

1

�i(�)
=

xa=2

�GUT
� ba

2�
log�=Mstr +

�a

4�
: (2:33)

The gauge independent part has been absorbed into a rede�nition of the string coupling

by

1

�GUT
=

4�

g2str
+
Y

4�
(2:34)

where Y =
R
�
d2�
�2
Y 0 and �a = g2a=4�. The massive string contributions are given by the

thresholds �a:

�a =

Z
�

d2�

�2
[xaBa(q; �q) � ba] : (2:35)

The ba are the �eld theory � functions given by[22]

ba = �11

3
TrV(Q

2
i ) +

2

3
TrF(Q

2
i ) +

1

6
TrS(Q

2
i ) (2:36)

Here, the traces are over two-component fermions and real scalars(in �eld theory normal-

ization). The massless contribution from the string is given by

ba = lim
q!0

xaBa(q; �q) (2:37)

and should equal the �eld theory result. This provides a consistency check for the string

calculation. One can facilitate the numerical integration by making a change of variables:
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�2 � Im� = 1=� 02. Since Ba(��1; �2) = B(�1; �2)
�, the imaginary part drops out leaving:

�a = �2Re
Z :5

0

d�1

Z 0

1=
p
1��2

1

d� 02
� 02

[xaBa(�1; �
0

2)� ba] : (2:38)
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3. Threshold calculation for two N=1 SU(2)� U(1)5 chiral models

We now calculate the threshold corrections for two twisted models with SU(2)�U(1)5

symmetry. In both cases, the thresholds increase the uni�cation scale by a very small

amount.

Example 1

A model with SU(2)�U(1)5 gauge symmetry [23,19] can be described by three generators

b0; b1; b2 : N0 = N1 = 2 : N2=4: K=2. The sixteen sectors of the model can be determined

from the vectors �bi describing the generators:

�b0 = ((1)12; (1)4; (1)12; (1)4)

�b1 = ((0)12; (0)4; (1)4(0)8; (0)2(1)2)

�b2 = ((0)10(1)2; (1=2)4; (0)2(1)2(0)4(1)4; (1=2)4)

(3:1)

Figure 1 illustrates the boundary conditions for the sectors of the model. The massless

states satisfy the following criteria:

(1): For the states to survive the projections, we must have:

e�i��bi �F� = �(�; bi)
�� (3:2)

(2): The left and right movers must each have a mass eigenvalue of 0:

�0mL
2jS >= (LL0 � 1=2)jS >= 0 ; �0mR

2jS >= (LR0 � 1=2)jS >= 0 (3:3)

The massless states come from the sectors: b1, b2, , b1b2, b
2
2, b1b

2
2, b

3
2, b1b

3
2. For g =

SU(2) �U(1)5, they are:
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