8,147 research outputs found

    Examining the importance of Aberdeenshire (UK) coastal waters for North Sea bottlenose dolphins (Tursiops truncates)

    Get PDF
    Using land- and vessel-based surveys, data on the relative abundance, distribution and habitat use of bottlenose dolphins (Tursiops truncatus) in Aberdeenshire waters were collected between 1999 and 2001. Bottlenose dolphins were present throughout the year, with peak abundance during the months of March to May. The occurrence of calves was seasonal, With the proportion of calves highest during the spring months. Foraging behaviour was recorded mainly in the vicinity of Aberdeen harbour. Dolphins photographed in Aberdeenshire waters were successfully matched and confirmed as Moray Firth animals. The results of the present study suggest that Moray Firth bottlenose dolphins utilize Aberdeenshire waters more frequently than previously reported. Aberdeen harbour is apparently an important feeding area, and Aberdeenshire waters are regularly used by another-calf pairs. This has important management implications since this area of coastline does not currently form part of the designated Special Area of Conservation (SAC) for this population

    Fish Assemblage Relationships with Physical Characteristics and Presence of Dams in Three Eastern Iowa Rivers

    Get PDF
    Fish assemblages in rivers of the Midwestern United States are an important component of the region\u27s natural resources and biodiversity. We characterized the physical environment and presence of dams in a series of reaches in three eastern Iowa rivers tributary to the Mississippi River and related these characteristics to the fish assemblages present. Some physical characteristics were similar among the 12 study reaches, whereas others differed substantially. We found a total of 68 species across the 12 study reaches; 56 in the Turkey River, 51 in the Maquoketa River and 50 in the Wapsipinicon River. Seventeen species could be described as ‘downstream-distributed’; 15 being found only in the lowest reach of one or more rivers and the other two being found only in the lowest reaches or two or more contiguous reaches including the lowest reach. Two species could be described as ‘upstream-distributed’, being found only in an uppermost reach. Non-metric multidimensional scaling ordination illustrated similarities among reaches, and five physical variables were significantly correlated with assemblage similarities. Catchment area and number of dams between reaches and the Mississippi River were strongly correlated with assemblage similarities, but the directions of their effects were opposite. Catchment area and number of dams were confounded. The collective evidence to date suggests that the pervasiveness of dams on rivers significantly alters fish assemblages, making underlying patterns of species change and relationships with naturally varying and human-influenced physical characteristics along a river\u27s course difficult to discern

    Infection levels and species diversity of ascaridoid nematodes in Atlantic cod, Gadus morhua, are correlated with geographic area and fish size

    Get PDF
    Atlantic cod (Gadus morhua) is among the most important commercial fish species on the world market. Its infection by ascaridoid nematodes has long been known, Pseudoterranova even being named cod worm. In the present study, 755 individuals were sampled in the Barents, Baltic and North Seas during 2012–2014. Prevalences for Anisakis in whole fish and in fillets in the different fishing areas varied from 16 to 100% and from 12 to 90% respectively. Abundance was also greatly influenced by the sampling area. Generalized additive model results indicate higher numbers of Anisakis in the North Sea, even after the larger body size was accounted for. Numbers and prevalence of Anisakis were positively related to fish length or weight. The prevalence of parasites in whole fish and in fillets was also influenced by the season, with the spring displaying a peak for the prevalence in whole fish and, at the same time, a drop for the prevalence in fillets. Whereas 46% of cod had Anisakis larvae in their fillets, the majority (39%) had parasites mainly in the ventral part of the fillet and only 12% had parasites in their dorsal part. This observation is of importance for the processing of the fish. Indeed, the trimming of the ventral part of the cod fillet would allow the almost total elimination of ascaridoids except for cod from the Baltic Sea where there was no difference between the dorsal and the ventral part. The presence of other ascaridoid genera was also noticeable in some areas. For Pseudoterranova, the highest prevalence (45%) in whole fish was observed in the Northern North Sea, whereas the other areas had prevalences between 3 and 16%. Contracaecum was present in every commercial size cod sampled in the Baltic Sea with an intensity of up to 96 worms but no Contracaecum was isolated from the Central North Sea. Non-zoonotic Hysterothylacium was absent from the Baltic Sea but with a prevalence of 83% in the Barents and the Northern North Sea. A subsample of worms was identified with genetic-molecular tools and assigned to the species A. simplex (s.s.), A. pegreffii, P. decipiens (s.s.), P. krabbei, C. osculatum and H. aduncum. In addition to high prevalence and abundance values, the cod sampled in this study presented a diversity of ascaridoid nematodes with a majority of fish displaying a co-infection. Out of 295 whole infected fish, 269 were co-infected by at least 2 genera

    Quantum Films Adsorbed on Graphite: Third and Fourth Helium Layers

    Full text link
    Using a path-integral Monte Carlo method for simulating superfluid quantum films, we investigate helium layers adsorbed on a substrate consisting of graphite plus two solid helium layers. Our results for the promotion densities and the dependence of the superfluid density on coverage are in agreement with experiment. We can also explain certain features of the measured heat capacity as a function of temperature and coverage.Comment: 13 pages in the Phys. Rev. two-column format, 16 Figure

    Remote inspection of wind turbine blades using UAV with photogrammetry payload

    Get PDF
    Visual Inspection is regularly used as a method of non-destructive testing (NDT) to find defects in large component structures. Wind turbine blades, regularly located in isolated environments, are typically difficult to access. In order to reduce operational and maintenance costs and extend asset lifetime, a project for the remote inspection of blades to accurately assess surface integrity is being undertaken. The remote inspection solution combines an unmanned aerial vehicle (UAV) with a photogrammetry payload to provide visual reconstruction of a blade for a holistic condition overview. Photogrammetric software is used to process the captured images to generate a 3D blade profile. A waypoint guidance algorithm controls the UAV to complete a full blade surface capture at constant distance, minimising motion blur. The results provide an accurate 3D reconstruction of the used blade complete with defects, discontinuities and markings and hence visual inspection using UAV combined with photogrammetry has been successfully implemented

    Future challenges in cephalopod research

    Get PDF
    We thank Anto®nio M. de Frias Martins, past President of the Unitas Malacologica and Peter Marko, President of the American Malacological Society for organizing the 2013 World Congress of Malacology, and the Cephalopod International Advisory Committee for endorsing a symposium held in honour of Malcolm R. Clarke. In particular, we would like to thank the many professional staff from the University of the Azores for their hospitality, organization, troubleshooting and warm welcome to the Azores. We also thank Malcolm Clarke’s widow, Dorothy, his daughter Zoe¹, Jose® N. Gomes-Pereira and numerous colleagues and friends of Malcolm’s from around the world for joining us at Ponta Delgada. We are grateful to Lyndsey Claro (Princeton University Press) for granting copyright permissions.Peer reviewedPublisher PD

    On the validity of mean-field amplitude equations for counterpropagating wavetrains

    Full text link
    We rigorously establish the validity of the equations describing the evolution of one-dimensional long wavelength modulations of counterpropagating wavetrains for a hyperbolic model equation, namely the sine-Gordon equation. We consider both periodic amplitude functions and localized wavepackets. For the localized case, the wavetrains are completely decoupled at leading order, while in the periodic case the amplitude equations take the form of mean-field (nonlocal) Schr\"odinger equations rather than locally coupled partial differential equations. The origin of this weakened coupling is traced to a hidden translation symmetry in the linear problem, which is related to the existence of a characteristic frame traveling at the group velocity of each wavetrain. It is proved that solutions to the amplitude equations dominate the dynamics of the governing equations on asymptotically long time scales. While the details of the discussion are restricted to the class of model equations having a leading cubic nonlinearity, the results strongly indicate that mean-field evolution equations are generic for bimodal disturbances in dispersive systems with \O(1) group velocity.Comment: 16 pages, uuencoded, tar-compressed Postscript fil

    The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    Get PDF
    Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The size distribution is particularly sensitive to the mass emissions flux, fire area, wind speed, and time, and we provide simplified fits of the aged size distribution to just these input variables. The simplified fits were tested against 11 aged biomass-burning size distributions observed at the Mt. Bachelor Observatory in August 2015. The simple fits captured over half of the variability in observed Dpm and modal width even though the freshly emitted Dpm and modal widths were unknown. These fits may be used in global and regional aerosol models. Finally, we show that coagulation generally leads to greater changes in the particle size distribution than OA evaporation/formation does, using estimates of OA production/loss from the literature
    • 

    corecore