147 research outputs found
High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing
Polarization sensitive optical coherence tomography (PS-OCT) provides a cross-sectional image of birefringence in biological samples that is complementary in many applications to the standard reflectance-based image. Recent ex vivo studies have demonstrated that birefringence mapping enables the characterization of collagen and smooth muscle concentration and distribution in vascular tissues. Instruments capable of applying these measurements percutaneously in vivo may provide new insights into coronary atherosclerosis and acute myocardial infarction. We have developed a polarization sensitive optical frequency domain imaging (PS-OFDI) system that enables high-speed intravascular birefringence imaging through a fiber-optic catheter. The novel design of this system utilizes frequency multiplexing to simultaneously measure reflectance of two incident polarization states, overcoming concerns regarding temporal variations of the catheter fiber birefringence and spatial variations in the birefringence of the sample. We demonstrate circular cross-sectional birefringence imaging of a human coronary artery ex vivo through a flexible fiber-optic catheter with an A-line rate of 62 kHz and a ranging depth of 6.2 mm
CP Violation in Supersymmetric U(1)' Models
The supersymmetric CP problem is studied within superstring-motivated
extensions of the MSSM with an additional U(1)' gauge symmetry broken at the
TeV scale. This class of models offers an attractive solution to the mu problem
of the MSSM, in which U(1)' gauge invariance forbids the bare mu term, but an
effective mu parameter is generated by the vacuum expectation value of a
Standard Model singlet S which has superpotential coupling of the form SH_uH_d
to the electroweak Higgs doublets. The effective mu parameter is thus
dynamically determined as a function of the soft supersymmetry breaking
parameters, and can be complex if the soft parameters have nontrivial
CP-violating phases. We examine the phenomenological constraints on the
reparameterization invariant phase combinations within this framework, and find
that the supersymmetric CP problem can be greatly alleviated in models in which
the phase of the SU(2) gaugino mass parameter is aligned with the soft
trilinear scalar mass parameter associated with the SH_uH_d coupling. We also
study how the phases filter into the Higgs sector, and find that while the
Higgs sector conserves CP at the renormalizable level to all orders of
perturbation theory, CP violation can enter at the nonrenormalizable level at
one-loop order. In the majority of the parameter space, the lightest Higgs
boson remains essentially CP even but the heavier Higgs bosons can exhibit
large CP-violating mixings, similar to the CP-violating MSSM with large mu
parameter.Comment: 29 pp, 3 figs, 2 table
Sparticle masses in deflected mirage mediation
We discuss the sparticle mass patterns that can be realized in deflected
mirage mediation scenario of supersymmetry breaking, in which the moduli,
anomaly, and gauge mediations all contribute to the MSSM soft parameters.
Analytic expression of low energy soft parameters and also the sfermion mass
sum rules are derived, which can be used to interpret the experimentally
measured sparticle masses within the framework of the most general mixed
moduli-gauge-anomaly mediation. Phenomenological aspects of some specific
examples are also discussed.Comment: 43 pages, 17 figures, references adde
Detecting Physics At The Post-GUT And String Scales By Linear Colliders
The ability of linear colliders to test physics at the post-GUT scale is
investigated. Using current estimates of measurements available at such
accelerators, it is seen that soft breaking masses can be measured with errors
of about (1-20)%. Three classes of models in the post-GUT region are examined:
models with universal soft breaking masses at the string scale, models with
horizontal symmetry, and string models with Calabi-Yau compactifications. In
each case, linear colliders would be able to test directly theoretical
assumptions made at energies beyond the GUT scale to a good accuracy,
distinguish between different models, and measure parameters that are expected
to be predictions of string models.Comment: Latex, 21 pages, no figure
Prediction of Zamorano cheese quality by near-infrared spectroscopy assessing false non-compliance and false compliance at minimum permitted limits stated by designation of origin regulations
Near-infrared transmittance (NIT) spectroscopy was used to predict the percentage in weight of the fat, dry matter, protein and fat/dry matter contents in Zamorano cheeses, protected with a Designation of Origin by the European Union. A total of 42 cheeses submitted to official control were analysed by reference methods. Samples were scanned (850–1050 nm) and predictive equations were developed using Partial Least Squares regression with a cross-validation step. Eight pretreatments independent from the remaining calibration samples were first considered. The most adequate one was that performing the second derivative (using a Savitzky–Golay method with a nine-point window and a second-order polynomial) followed by the standard normal variate transformation. Percentages of the root mean square error in cross-validation, the coefficient of determination and the mean of the absolute value of relative errors found were, respectively, for fat (0.62; 96.16; 1.05), dry matter (0.76; 96.03; 0.83), protein (0.41; 97.82; 0.81) and the fat/dry matter ratio (0.61; 92.51; 0.66). At a 99% confidence level, the trueness of the NIT+PLS methods for fat, dry matter and protein was verified. The official regulation for Zamorano cheese demands minimum permitted limits on the percentages in weight for protein (25%), dry matter (55%) and the ratio of fat to dry matter (45%). The adaptation of both the decision limit and the detection capability to the case of a minimum permitted limit (CDα and CDβ, respectively) when a Partial Least Squares calibration is used has been applied for the first time for a food product protected by a Designation of Origin. The values of CDα with a probability of false non-compliance equal to 0.05 and of CDβ when, in addition, the probability of false compliance was equal to or less than 0.05, both provided by the corresponding NIT+PLS-based method, were, respectively, for protein (24.78%; 24.57%), dry matter (54.14%; 53.28%) and the fat/dry matter ratio (44.39%; 43.78%).authorsthankthefinancialsupportprovidedbyMinisterio
de CienciaeInnovacio´n (CTQ2011-26022)andJuntadeCastillay
Leo´n (BU108A11-2
Broad-spectrum in vitro activity of macrophage infectivity potentiator inhibitors against Gram-negative bacteria and Leishmania major
Background
The macrophage infectivity potentiator (Mip) protein, which belongs to the immunophilin superfamily, is a peptidyl-prolyl cis/trans isomerase (PPIase) enzyme. Mip has been shown to be important for virulence in a wide range of pathogenic microorganisms. It has previously been demonstrated that small-molecule compounds designed to target Mip from the Gram-negative bacterium Burkholderia pseudomallei bind at the site of enzymatic activity of the protein, inhibiting the in vitro activity of Mip.
Objectives
In this study, co-crystallography experiments with recombinant B. pseudomallei Mip (BpMip) protein and Mip inhibitors, biochemical analysis and computational modelling were used to predict the efficacy of lead compounds for broad-spectrum activity against other pathogens.
Methods
Binding activity of three lead compounds targeting BpMip was verified using surface plasmon resonance spectroscopy. The determination of crystal structures of BpMip in complex with these compounds, together with molecular modelling and in vitro assays, was used to determine whether the compounds have broad-spectrum antimicrobial activity against pathogens.
Results
Of the three lead small-molecule compounds, two were effective in inhibiting the PPIase activity of Mip proteins from Neisseria meningitidis, Klebsiella pneumoniae and Leishmania major. The compounds also reduced the intracellular burden of these pathogens using in vitro cell infection assays.
Conclusions
These results indicate that Mip is a novel antivirulence target that can be inhibited using small-molecule compounds that prove to be promising broad-spectrum drug candidates in vitro. Further optimization of compounds is required for in vivo evaluation and future clinical applications
Non-thermal dark matter via Affleck-Dine baryogenesis and its detection possibility
The formation and late time decays of Q-balls are generic consequences of the
Affleck-Dine (AD) baryogenesis. A substantial amount of the lightest
supersymmetry (SUSY) particles (LSPs) are produced non-thermally as the decay
products of these Q-balls. This requires a significantly large annihilation
cross section of the LSP so as not to overclose the universe, which predicts a
higgsino- or wino-like LSP instead of the standard bino LSP. We have reexamined
the AD baryogenesis with special attention to the late-time decays of the
Q-balls, and then specified the parameter regions where the LSPs produced by
the Q-ball decays result in a cosmologically interesting mass density of dark
matter by adopting several SUSY breaking models. This reveals new
cosmologically interesting parameter regions, which have not attracted much
attention so far. We have also investigated the prospects of direct and
indirect detection of these dark matter candidates, and found that there is an
intriguing possibility to detect them in various next generation dark matter
searches.Comment: 51 pages, 18 figures, version accepted for publication in Physical
Review
Phenomenology of flavor-mediated supersymmetry breaking
The phenomenology of a new economical SUSY model that utilizes dynamical SUSY
breaking and gauge-mediation (GM) for the generation of the sparticle spectrum
and the hierarchy of fermion masses is discussed. Similarities between the
communication of SUSY breaking through a messenger sector, and the generation
of flavor using the Froggatt-Nielsen (FN) mechanism are exploited, leading to
the identification of vector-like messenger fields with FN fields, and the
messenger U(1) as a flavor symmetry. An immediate consequence is that the first
and second generation scalars acquire flavor-dependent masses, but do not
violate FCNC bounds since their mass scale, consistent with effective SUSY, is
of order 10 TeV. We define and advocate a minimal flavor-mediated model (MFMM),
recently introduced in the literature, that successfully accommodates the small
flavor-breaking parameters of the standard model using order one couplings and
ratios of flavon field vevs. The mediation of SUSY breaking occurs via two-loop
log-enhanced GM contributions, as well as several one-loop and two-loop
Yukawa-mediated contributions for which we provide analytical expressions. The
MFMM is parameterized by a small set of masses and couplings, with values
restricted by several model constraints and experimental data. The
next-to-lightest sparticle (NLSP) always has a decay length that is larger than
the scale of a detector, and is either the lightest stau or the lightest
neutralino. Similar to ordinary GM models, the best collider search strategies
are, respectively, inclusive production of at least one highly ionizing track,
or events with many taus plus missing energy. In addition, D^0 - \bar{D}^0
mixing is also a generic low energy signal. Finally, the dynamical generation
of the neutrino masses is briefly discussed.Comment: 54 pages, LaTeX, 8 figure
Observation of the astrophysically important 3+ state in 18Ne via elastic scattering of a radioactive 17F beam from 1H
The 17F(p, γ)18 reaction is important in stellar explosions, but its rate has been uncertain because of an expected 3+ state in 18Ne that has never been conclusively observed. This state would provide a strong l = 0 resonance and, depending on its excitation energy, could dominate the stellar reaction rate. We have observed this missing 3+ state by measuring the 1H(17F, p)17F excitation function with a radioactive 17F beam at the ORNL Holifield Radioactive Ion Beam Facility. We find that the state lies at a center-of-mass energy of Er = 599.8 ± 1.5stat ± 2.0sys keV (Ex = 4523.7 ± 2.9keV) and has a width of Γ = 18 ± 2stat ± 1sys keV
The astrophysically important 3+ state in 18Ne and the 17F(py)18Ne stellar rate
Knowledge of the [Formula Presented] reaction rate is important for understanding stellar explosions, but it was uncertain because the properties of an expected but previously unobserved [Formula Presented] state in [Formula Presented] were not known. This state would provide a strong s-wave resonance for the [Formula Presented] system and, depending on its excitation energy, could dominate the stellar reaction rate at temperatures above 0.2 GK. We have observed this missing [Formula Presented] state by measuring the [Formula Presented] excitation function with a radioactive [Formula Presented] beam at the ORNL Holifield Radioactive Ion Beam Facility (HRIBF). We find that the state lies at a center-of-mass energy of [Formula Presented] keV [Formula Presented] and has a width of [Formula Presented] The measured properties of the resonance are only consistent with a [Formula Presented] assignment
- …