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A fast method is proposed to determine fat, dry matter and protein contents in 
Zamorano cheese. Assessing its quality is mandatory since this cheese is controlled by 
a European Protected Designation of Origin (PDO). Minimum permitted limits set by 
quality regulations are ensured with NIR and PLS. The adaptation of both the decision 
limit and the detection capability to the case of a minimum permitted limit (CDα and 
CDβ respectively) when a Partial Least Squares calibration is used has been applied 
for the first time for a food product protected by a Designation of Origin.  

The official regulation for Zamorano cheese demands minimum permitted limits of 
percentage in weight for protein (25%) dry matter (55%) and fat-to-dry matter (45%). 
The values of CDα and CCβ with a probability of false non-compliance and false 
compliance fixed at 0.05, provided by the method, were  very satisfactory. 

*Novelty Statement
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Abstract 

Near-infrared transmittance spectroscopy was used to predict the percentage in weight of fat, 
dry matter, protein contents and of the fat/dry matter ratio in Zamorano cheeses, protected 
with a Designation of Origin by the European Union. A total of 124 cheeses submitted to 
official control were analysed by reference methods. Samples were scanned (850-1050 nm) 
and predictive equations were developed using Partial Least Squares regression with a 
cross-validation step. Eight pretreatments independent from the remaining calibration 
samples were first considered. The most adequate one was that performing the second 
derivative (using a Savitzky–Golay method with a nine-point window and a second-order 
polynomial) followed by the standard normal variate transformation. Percentages of the root 
mean square error in cross-validation, the coefficient of determination and the mean of the 
absolute value of relative errors found were, respectively, for fat (0.55; 96.16; 1.05), dry 
matter (0.74; 96.03; 0.83), protein (0.33; 97.82; 0.81) and the ratio fat/dry matter (0.49; 
92.51; 0.66). At a 99% confidence level, the trueness of the NIT-PLS methods for fat, dry 
matter and protein was verified. The official regulation for Zamorano cheese demands 
minimum permitted limits of percentage in weight for protein (25%) dry matter (55%) and fat-
to-dry matter (45%). The adaptation of both the decision limit and the detection capability to 
the case of a minimum permitted limit (CDα and CDβ respectively) when a Partial Least 
Squares calibration is used has been applied for the first time for a food product protected by 
a Designation of Origin. The values of CDα with a probability of false non-compliance equal 
to 0.05 and of CDβ when, in addition, the probability of false compliance was equal to or less 
than 0.05, both provided by the corresponding NIT-PLS based method, were, respectively, 
for protein (24.78; 24.57%), dry matter (54.14; 53.28%) and the ratio fat/dry matter (44.39; 
43.78%). 
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Introduction 

Infrared (IR) spectroscopy deals with the infrared region of the electromagnetic spectrum    
(800−105 nm). With this technique, the absorption of different IR frequencies by a sample 
placed in the path of an IR beam can be quantified. IR spectroscopy has currently become 
one of the most common techniques for a wide range of analyses in various industries, 
especially in food research. This growing applicability is primarily due to the achievement of a 
fast and non-destructive method of analysis and the rapid development of both multivariate 
techniques and IR spectroscopic instrumentation hardware and software, which has enabled 
the treatment of the spectral information provided by the instruments. 

Regarding dairy industry, both near-infrared (NIR) and mid-infrared (MIR) spectroscopy have 
been tested to determine their potential in acquiring information on process monitoring, 
determination of quality, geographical origin and adulteration of dairy products in processes 
such as milk, milk powder, butter and cheese production. However, the NIR region 
(800−2500 nm) was long stigmatized because of its low sensibility, about 10−100 times 
smaller than that of MIR, and the overlapping of broad spectroscopic bands, which made it 
quite difficult to interpret and assign them to the different functional groups: sharp peaks do 
not appear in this part of the spectrum as they do in the MIR region, rather numerous 
overtones and combinations of vibrational bands involving C─H, O─H and N─H chemical 
bonds [1].  

Concentrations of nearly all major constituents of dairy products such as water, protein, fat 
and carbohydrate can be determined using absorption spectroscopy with sufficient accuracy. 
By way of example, it is a well-known fact that composition and texture of cheese are 
intrinsically linked with its quality, so IR spectroscopy has been considered for predicting 
both. In particular, NIR spectroscopy [2,3,4,5] has been more widely used than MIR 
spectroscopy for cheese composition determination [6,7,8], since the radiation light of MIR, 
despite its better specificity, has a very short penetration depth (usually a few micrometers) 
and cannot penetrate through glass, plastics and other materials. On the contrary, most 
packaging stuff is transparent to NIR light [9]. 

Two basic sampling methods are used for IR spectroscopy: transmittance mode and diffuse 
reflectance mode [10]. When light is incident on a sample, it may be reflected, absorbed or 
transmitted. The sum of the reflected, absorbed and transmitted energy must be equal to the 
initial energy of the light [11]. Thus, the amount of radiation absorbed by the sample can be 
measured by detecting the amount of energy transmitted through the sample or reflected 
from the sample. Although McKenna in [5] stated that published data indicated that the 
determination of cheese moisture content by near-infrared transmittance (NIT) is more 
accurate than by reflectance, NIR reflectance spectroscopy is actually the most widely used 
mode of NIR spectroscopy in cheese compositional analysis [2,3,4,9].  

Since dairy products contain a lot of important intrinsic fluorophores such as vitamin A and 
the aromatic aminoacids tryptophan, tyrosine and phenylalanine in proteins, the potential of 
front-face fluorescence spectroscopy (FFFS) to succeed in cheese evaluation has also been 
investigated [12,13,14], in some cases coupled with an IR spectroscopic technique [15,16]. 
Ref. [17] is a review of recent developments in this field. 
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On the other hand, nuclear magnetic resonance (NMR) has proved to be a versatile 
spectroscopic technique in dairy research [14,18], since some processes such as pressure, 
heating or changes in pH, which alter the milk protein conformation and/or the aggregation 
state, can be studied by NMR [19]. 

However, for most food samples, all this chemical information is obscured by changes in the 
spectra caused by physical properties such as the particle size of powders. This means that 
NIR spectroscopy becomes a comparative technique requiring calibration against a 
reference method for the constituent of interest [20]. So, the rapid and ongoing evolution in 
NIR spectroscopic applications in research and daily routine would have been impossible 
without the parallel development of chemometric calibration methods. A main part of 
chemometrics is multivariate data analysis, essential for qualitative and quantitative assays 
based on NIR spectroscopy. During the last two decades, the interest in multivariate 
quantitative analysis of spectroscopic data has increased significantly. Nowadays, most NIR 
spectroscopic applications are carried out by using the so-called bilinear factor methods, in 
particular, Partial Least Squares (PLS) regression [21,22]. This technique was devised to find 
a few linear combinations (latent variables) of the spectral intensities, X, in order to explain 
the values of the reference method, y, and to use only those for the estimation of the 
regression model. Each latent variable is the result of maximizing the square of the 
covariance between y and all the possible linear functions of X. Therefore, PLS, widely used 
in chemometrics, is a biased regression method on those latent variables which is aimed at 
achieving the highest prediction capacity. Regarding dairy products, the International 
Standard ISO 21543:2006 “Milk products – Guidelines for the application of near infrared 

spectrometry” governs the performance criteria of this type of analyses with multivariate 
calibration techniques [23].  

In Spain, both Protected Designation of Origin (PDO) and Protected Geographical Indication 
(PGI) represent the system of recognition of a distinctive quality. This is the consequence of 
some typical and distinguishing characteristics caused by i) a defined geographical area 
where raw materials are produced and products are made, and ii) the human factor, i.e. the 
influence of people that take some part in all these procedures. 

Council Regulation (EC) No. 510/2006 of 20 March 2006 [24] lays down the definitions for 
PDO and PGI, the two regulatory figures in a framework of protection applied on agricultural 
products and foodstuffs. For the purpose of this Regulation, “designation of origin” (DO) 
means the name of a region, a specific place or, in exceptional cases, a country, used to 
describe an agricultural product or a foodstuff: i) originating in that region, specific place or 
country, ii) the quality or characteristics of which are essentially or exclusively due to a 
particular geographical environment with its inherent natural and human factors, and iii) the 
production, processing and preparation of which take place in the defined geographical area. 

Zamorano cheese is protected with a DO since 1993 and registered as PDO in Commission 
Regulation (EC) No. 1107/96 [25]. According to the Order of 6 May 1993 (BOE No. 120 of 20 
May 1993) [26], that name refers to a compressed-paste fatty cheese made from milk of 
ewes of the Spanish Churra and Castellana breeds and with a ripening step of at least 100 
days’ duration. 

The manufacturing process of Zamorano cheese is detailed in the chapter III of [26]. Either 
raw or pasteurized milk can be used as starting milk. Coagulation is promoted by adding the 

rennet in at 28−32 ºC for 30−45 min. The resulting curd undergoes consecutive cuts until 5-

to-10-milimeter grains are obtained; then the curd is reheated up to a maximum temperature 
of 40 ºC. Both moulding and pressing are carried out with moulds and presses which make 
cheese achieve its characteristic shape. Either wet-salting or dry-salting can be 
accomplished. On top of all that, the physicochemical properties that Zamorano cheeses 
must fulfil are established in the chapter IV of [26]. 
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This work was aimed to develop a simple and rapid analytical tool for monitoring 
simultaneously fat, dry matter and protein contents in Zamorano cheese samples by NIT 
spectroscopy. Calibration models based on a cross-validated PLS regression of the 
corresponding constituent, expressed as percentage in weight, on the spectra recorded were 
estimated. By comparing the models arisen, several pretreatments of the spectra were 
evaluated in order to achieve the best correlations with the values obtained by reference 
methods. Finally, considering for each constituent that best PLS model, the trueness of the 
method was estimated, and the minimum contents of protein, dry matter and fat-to-dry matter 
ratio were calculated in terms of detection capability of the corresponding procedure 
evaluating the probabilities of false non-compliance and false compliance according to 
specific regulations. 

Materials and methodology 

Cheese samples 

Forty-two Zamorano cheese samples dated back to either 2010 or 2011 were supplied by the 
Regulatory Council from all the producers included in the POD “Zamorano cheese”. Cheese 
samples were vacuum-packaged and stored at frozen conditions (-20 ± 5 ºC) until analysis. 
Sampling and subsequent analyses were performed in accordance with the general 
recommendations included in the International Standard ISO 21543:2006 [23]. 

Reference analyses 

All reference analyses were carried out in the Milk Technological Station (Agro Technological 
Institute) in Palencia, which is an accredited laboratory for the performance of such 
determinations according to the criteria established in the regulation UNE-EN ISO/IEC 17025 
[27]. 

All reagents involved in these analyses were of analytical reagent quality or superior and 
purchased from Panreac Química S.L.U. (Barcelona, Spain).  

Determination of fat content. Gravimetric method [28]: a test portion was digested with 
hydrochloric acid; then ethanol was added. The acid-ethanolic solution was extracted with 
diethyl ether and light petroleum and the solvents were removed by distillation and 
evaporation with a R-200 rotavapor® (Büchi Labortechnik (Flawil,Switzerland)). The mass of 
the substances extracted was determined using a Sartorius ME 414S analytical balance 
(Goettingen, Germany). Uncertainty had been evaluated prior to the performance of this work 
and resulted in a value of 0.36% when the fat percentage in weight ranged from 0.90 to 
45.0%. 

Determination of dry matter. Gravimetric method [29]: a weighed test portion mixed with sand 
was dried by heating it in a Digitheat drying oven (J.P. Selecta S.A. (Barcelona, Spain)) at 
102 ± 2 ºC. The dried test portion was then weighed in a Sartorius ME 414S analytical 
balance to determine the loss of mass. For this analytical method, the measurement of 
uncertainty with validation samples resulted in a value of 0.64% when the dry matter 
percentage in weight ranged from 20.0 to 80.0%. 

Determination of protein. Kjeldahl method [30]: a test portion was digested with a mixture of 
concentrated sulfuric acid and potassium sulphate in a K-436 block digestion system 
connected to a scrubber (Büchi Labortechnik (Flawil, Switzerland)). Copper (II) sulphate was 
used as a catalyst to thereby convert organic nitrogen present to ammonium sulphate. 
Excess sodium hydroxide was added to the cooled digest to liberate ammonia. The liberated 
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ammonia was steam distilled into excess boric acid solution using a B-324 distillation unit 
(Büchi Labortechnik (Flawil, Switzerland)) and titrated against a hydrochloric acid standard 
volumetric solution by means of a bottle top burette Titrette® (BRAND GMBH + CO KG 
(Wertheim, Germany)). The nitrogen content was calculated from the amount of ammonia 
produced, and the crude protein content from the nitrogen content obtained (conversion 
factor of 6.38). Uncertainty of this analytical method equalled 0.41% when the protein 
percentage in weight ranged from 6.0 to 30.0%. 

All the reference analyses were performed in duplicate. For each sample, the mean was 
used as the value of the fat, dry matter or protein content as appropriate.  

Near-infrared spectroscopy 

All samples were allowed to reach room temperature (25 ± 2 °C) before analysis. Then each 
sample was grated after being removed from its plastic package and once all outer portions 
had been cut off. Approximately 40 g of each homogeneous grated cheese were packed into 
a 100 mm-diameter Petri dish in order to achieve an air hole-free optical path length of about 
10 mm. To minimise sampling error, all samples were analysed in triplicate, except for two of 
them, which were in duplicate.  

The samples were measured using NIT mode on a FOSS FoodScan Lab (Hilleroed, 
Denmark). Because of its effect on spectral response [31], the temperature of the 
spectroscopic measurements was controlled within the range 26−30 ºC. NIT spectra were 
collected from 850 to 1050 nm at 2 nm intervals in a log 1/T format, where T is the sample 
transmittance. Each spectrum was an average of 16 sub-spectra recorded at sixteen 
different points by rotating the Petri dish automatically in the analyser. Therefore, 124 NIT 
spectra (shown in Fig. 1a) were finally obtained, which made up the calibration set.   

Chemometrics: multivariate analysis 

Data preprocessing 

Both a slightly curved baseline and a baseline offset can be seen in Fig. 1a, which made 
preprocessing necessary to transform data in such a way that the multivariate signals would 
better adhere to Beer’s law. Eight pretreatments were evaluated by comparison of the 
calibration models estimated from the corresponding preprocessed data:  

i) Standard normal variate (SNV) scaling. The basic equation for SNV correction is 

0
corr

1

a

a




x
x    (1) 

where xcorr and x are the corrected and the original sample spectrum, respectively, 
while a0 and a1 are the average value and the standard deviation of the spectrum, 
obtained by means of the following equations: 
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where m represents the variable (wavelength) index and M the number of variables 

The SNV technique does not need a reference spectrum, and thus no user decision 
for the computation. It also means a pretreatment for each sample (a row of X) 
independent of the other samples. However, as there is not a regression step, SNV 
does not remove noise [9]. This preprocessing is weighted towards considering the 
spectrum values that deviate from the mean more heavily than those near the mean.  

ii) Derivatives are a common method used to remove the unimportant baseline signal 
from spectra by taking the derivative with respect to the variable number. This method 
is adequate for NIT signals because variables are strongly related to each other and 
the adjacent variables contain similar correlated signals. The first derivative of every 
spectrum has been carried out using a Savitzky–Golay method (SG) with a window of 
nine points and a second-order polynomial. This preprocessing procedure is 
annotated as SG (9,2,1) in the following. 

iii) Second derivative of the NIT signals also using SG method (window with 9 points and 
second-order polynomial), named SG (9,2,2).  

iv) SNV followed by detrending. Detrend fits a polynomial (of second order in this work)  
to the entire spectra containing both baseline and signal and subtracts this 
polynomial. As such, it works optimally when the largest source of spectral signal in 
each sample is background interference. The detrend method was introduced along 
with the SNV transformation by Barnes et al [32]. 

v) SNV followed by SG (9,2,1).  

vi) SNV followed by SG (9,2,2).  

vii) SG (9,2,1) followed by SNV.  

viii) SG (9,2,2) followed by SNV. 

Partial Least Squares regression 

Data were arranged in a matrix X with dimensions (124×100), where 124 refers to the total 
number of samples analysed and 100 to the set of wavelengths (predictors) recorded. For 
each pretreatment, four PLS models were performed where responses were the fat, dry 
matter, protein and the fat-to-dry matter percentage in each cheese sample, respectively. 
The values of these four responses were obtained by means of reference analysis methods. 
Four cancellation groups were randomly chosen for the cross-validation step, which was 
repeated twenty times to assure the stability of the results. 

As previously stated [33,34,35], in every instance the procedure followed for the PLS 
regression was: 

i)  Preprocess X data with the procedures i) to viii) above indicated and autoscale the 
response y. 

ii) Determine the optimum number of latent variables by plotting the root mean square 
error in cross-validation (RMSECV) versus the number of latent variables. Generally, 
the best solution should be the one giving the lowest RMSECV with the fewest 
variables, minding that value is not lower than that of the uncertainty for the 
corresponding reference method to avoid overfitting the model. 

iii) Remove those samples with standardized residual (in absolute value) greater than 2.5 
(considered as y-outliers) and/or with both Q and T2 Hotelling values higher than their 
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corresponding thresholds at a 95% confidence level (considered as outliers in the 
calibration subspace). The Q residual index indicates the difference or residual 
between the value of the sample and its projection on the subspace of the model, while 
the T2 Hotelling statistic is a measurement of the Mahalanobis distance from each 
sample to the centroid, measured in the projection plane (hyperplane) of the model 
considered. 

iv) Repeat steps ii) and iii) until there are no outliers of any kind. 

After a PLS model had been obtained for each response, with the aim of checking the validity 
of the method, a least squares (LS) linear regression between the PLS calculated values of 
the response and the values obtained by the corresponding official method was performed in 
each case. LS regression is unbiased and with the lowest variance providing that residuals 
have the same normal distribution in all samples. But this distributional property of the 
residuals is false if some datum lies outside the linear tendency, so the good inferential 
properties of the LS regression are cancelled. This could occur if there were outlier samples 
with erroneous values either calculated from the PLS model or wrongly determined from 
reference analyses. Therefore, previously it is necessary an outlier detection step based on a 
least median of squares (LMS) regression [36,37], which provides an objective and robust 
criterion to detect outliers. So, every sample whose standardized residual (SR) and/or 
diagnostic resistance (DR) with regard to the LMS model is in absolute value higher than 2.5, 
will be removed from the data set. The final LS linear regression, actually called reweighted 
least squares (RLS) regression, of predicted values of the response versus true values will 
be carried out with the remaining data. 

Finally, two hypothesis tests enabled to verify the trueness of the method by checking if, at a 
significance level α, there were no statistically significant differences between the values 

obtained, respectively, for the slope (b1) and 1, and the intercept ( 0b ) and 0. In such a case, 

it could be concluded that the trueness of the PLS method built was confirmed at the 
confidence level 1 – α. 

Assessing the minimum permitted limit with a multivariate signal 

When, as it happens in the present work, a minimum permitted limit 0x  has been established 

for a substance, the following one-tailed hypothesis test is posed about the presence of the 
analyte in the problem sample: 

H0: x = 0x  (the quantity of analyte is greater than or equal to 0x ). 

Ha: x < 0x  (the concentration of analyte is lesser than 0x ). 

The decision limit (CDα) of the method is the concentration below which it can be decided 
with a statistical certainty of 1 – α that the minimum permitted limit has been truly exceeded. 
CDα is related with the probability of false non-compliance, α. That is, α is the probability of 
maintain that the tested sample is not compliant when it is (false non-compliance decision or 

type I error). Formally,  0 0α = pr reject H H  is true . 

But it is also necessary to assess the probability, β, of false compliant decision (type II error). 
β is the probability of affirming that the tested sample has a quantity of the analyte greater 
than or equal to x0, i.e., to conclude that it is compliant when it is not. Formally, 

 0 0β = pr accept H H  is false . 

Therefore, the capability of detection (CDβ) of the method is the concentration above which it 
can be assessed that the probability of false compliance is β and that of false non-

(4) 
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compliance is α. CDβ, which is the critical value of the hypothesis test in Eq. (4), depends on: 
α, β, the number of replicate measurements in the test sample and the sensitivity and the 
precision of the method [38]. 

Once the probability α has been established, the plot of β versus CDβ represents the 
operative curve of the hypothesis test in Eq. (4). The latter shows the capacity of the method 
to discriminate a specific quantity with regard to the minimum permitted limit. 

Analytical methods provide signals and both CDα and CDβ are concentrations, so a 
calibration curve is necessary to relate signals and concentrations.  

If x0 is either null or the maximum limit permitted, the alternative hypothesis is formulated as 

the concentration of analyte is greater than 0x ( x > 0x ). If the analytical signal is univariate 

and the calibration curve is linear, then CDα and CDβ are named, respectively, CCα, 
(decision limit) and CCβ (capability of detection). This definition of detection capability has 
been accepted by both IUPAC [39], ISO 11843 [40] and some European regulations [41].  

In the case of using multivariate and/or multiway signals, the approach as hypothesis test is 
the same, but the linear calibration model is no longer valid. Instead, the concentration y is 
the response to be fitted as a function of a vector, X, when signals are multivariate, or a 
tensor, X, if signals are multiway. The previous concepts of CCα and CCβ have been 
generalized for these signals with multivariate calibrations such as PLS [42] or multiway such 
as n-PLS or PARAFAC [43]. The procedure can be also used with any kind of calibration 
function such as a neural network [44]. The use of CDα and CDβ for assuring a minimum 
value has been developed in [33], but the present work means their application for the first 
time to ensure a minimum value regulated in food. The procedure is based in the regression 
PLS calculated concentration versus true concentration. A tutorial about how to evaluate type 
I and type II errors in various kinds of chemical analyses can be consulted in [38].  

Software 

The FoodScan software (FOSS) was used to acquire spectra. Raw data were exported to 
MATLAB using WinISI III, version 1.60 (Infrasoft International, Port Matilda, PA, USA). PLS 
regressions were computed with the PLS_Toolbox [45] for use with MATLAB version 
7.9.0.529 (The MathWorks, Inc.). Linear regressions between PLS calculated concentration 
and true concentrations, and hypothesis tests necessary to check the accuracy of the PLS 
models were done with STATGRAPHICS [46]. Least median of squares regressions for 
detection of outliers were carried out with PROGRESS [36]. A home-made program, 
NWAYDET, was used to estimate CDα and CDβ for protein, dry matter and the ratio fat/dry 
matter. 

Results and discussion 

Construction of PLS models 

The whole set of 124 cheese samples was selected for PLS calibration development 
following the procedure explained in the “Partial Least Squares regression” subsection. 
According to the results of reference methods, percentages in weight of the three 
constituents analysed ranged: i) from 33.30 to 42.94% for fat; ii) from 63.95 to 77.20% for dry 
matter; iii) from 22.21 to 28.73% for protein. 
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24 PLS models (not showed) built to estimate each of the three response variables from 
each set of pretreated NIT data were compared in order to select the best preprocessing 
method. Thus, the chosen pretreatment was SG (9,2,2) followed by SNV. That 
transformation of the NIT spectra generally involved the lowest number of latent variables in 
the final model together with the highest percentage of explained variance of the response 
without having removed too many outlier data from the calibration set. Fig. 1b shows the 124 
NIT spectra once pretreated according to the SG (9,2,2) + SNV methodology. 

The results of the application of the procedure for estimating the relation between each 
response and the NIT spectra are summarized in Table 1.  

For example, with regard to fat, for the initial calibration set (124 objects), the optimal 
RMSECV value (0.66) was obtained from the 7-latent variable model (RMSEC = 0.60; 
93.17% of explained variance of fat). Samples with numbers 75 and 76 had standardized 
residuals greater than 2.5 in absolute value when that number of latent variables was 
considered, so they were removed from the calibration set. The process was repeated with 
the remaining objects. In the second column in Table 1 the evolution of the models built is 
displayed. Thus the optimum number of latent variables was 7 for the fourth model (RMSEC 
= 0.50; RMSECV = 0.55; 95.37% of explained variance of fat). In this case, as no objects 
presented neither standardized residuals higher than 2.5 in absolute value nor Q and T2 
Hotelling values greater than their corresponding threshold values at a 95% confidence level, 
this was considered the final PLS model for fat. With this PLS model, the mean, median and 
standard deviation of the absolute value of the relative error in calibration, which ranged from 
0.03 to 3.26%, were, respectively, 1.05, 0.87 and 0.78%. 

In regard to dry matter and protein contents, the same procedure was applied for the 
estimation of the corresponding PLS model which relates each response with the pretreated 
NIT spectra. As it can be seen in Table1, in the case of dry matter, after the removal of the 
outlier data (11) encountered, the number of latent variables that achieved the optimum 
value for RMSECV was 5 (RMSEC = 0.69; RMSECV = 0.74; 96.03% of explained variance 
of dry matter). With this PLS model, the mean, median and standard deviation of the 
absolute value of the relative error in calibration, which ranged from 0.02 to 1.99%, were, 
respectively, 0.83, 0.74 and 0.53%. On the other hand, for protein content, once 3 outlier 
data had been rejected, the PLS model that fitted this response best was the one estimated 
from 10 latent variables (RMSEC = 0.27; RMSECV = 0.33; 96.57% of explained variance of 
protein), while the mean, median and standard deviation of the absolute value of the relative 
error in calibration, which ranged from 0.00 to 2.67%, were, respectively, 0.81, 0.68 and 
0.65%.  

It can be seen that, in every instance, the value of root mean square error in calibration 
(RMSEC) was quite similar to that of RMSECV, which shows that all the models are stable. 

Trueness of the PLS models in calibration 

After a PLS model had been estimated for each of the three responses, a least squares (LS) 
linear regression was performed with the PLS predicted values of the response versus the 
values obtained by the corresponding reference method. Before the LS calibration, a LMS 
regression was carried out to detect possible outlier data caused by some kind of mistake 
occurred either at the construction of the PLS model or during analyses by the official 
method. The results of the LMS and LS regressions and p-values for the two hypothesis 
tests posed to check the trueness of every method are listed in Table 2. As p-values were 
higher than 0.01, it was asserted that, in all cases, the analytical behaviour of the PLS 
method was the same as that of the corresponding reference procedure at a 99% confidence 
level. Plots of the percentage of each variable obtained by PLS regression as a linear 



 - 10 - 

function of the content provided by the respective official method are illustrated in Figs. 2a 
(fat), 2b (dry matter) and 2c (protein). 

Detection capability for protein, dry matter and fat-to-dry matter ratio 

In the chapter IV of [26], which lays down the regulations and specifications of Zamorano 
cheeses, the following physicochemical properties are established: 

i) The protein content must not be lower than 25% in weight. 

ii) The dry matter content must not be lower than 55% in weight. 

iii) The fat-to-dry matter ratio, expressed as percentage in weight, must not be lower 
than 45%. 

In this context, the detection capability of every method at its respective minimum permitted 
level with α = β = 0.05 was estimated from the corresponding RLS regression performed 
previously. So, for each case and for a specific number of replicates, the operative curve of 
the hypothesis test (Eq. 4) was determined when α = 0.05. This graph shows the probability 
of false compliance, β, as a function of the percentage in weight of the corresponding 
response (protein, dry matter and fat-to-dry matter ratio) for its minimum level stated above. 
This nominal value is, in each case, that of x0 in Eq. 4.  

For the percentage of total protein in Zamorano cheeses, several operative curves for the 
nominal minimum protein content of 25% are pictured in Fig. 3. Particularly, for α = β = 0.05, 
the decision limit, CDα, was 24.78% and the detection capability, CDβ, equalled 24.57% 
when 3 replicates were considered, curve (c). So the NIT-PLS-based method is able to 
distinguish 24.57% from 25% with probabilities of false non-compliance and false compliance 
equal to 0.05. 

For the dry matter content, Fig. 4 collects four power curves for the minimum limit of 55%. 
With 3 replicates and α = β = 0.05, CDα, would be 54.14%, and CDβ, 53.28%, curve (c). The 
values for the dry matter percentage of the samples analysed ranged from 63.95 to 77.20%, 
all of them higher than the minimum percentage in law. This means that both CDα and CDβ 
were extrapolated values and for this reason they were overestimated. That is, the NIT-PLS 
based method is able to distinguish 53.28% from 55% with a probability of false non-
compliance equal to 0.05 and a probability of false compliance less than 0.05. 

In the case of the fat/dry matter percentage, the PLS model which relates this variable to the 
SG (9,2,2)–SNV-pretreated spectra was first built instead of considering the ratio of the 

values obtained by PLS regression for fat and dry matter. According to the results of 
reference methods, percentages in weight of this ratio ranged from 49.96 to 59.87%. The 
evolution of the procedure designed to achieve the PLS regression is collected in Table 3, 
where it is shown that, after 11 outlier objects had been removed from the calibration set, the 
model that fitted the fat/dry matter ratio best was the one estimated from 8 latent variables 
(RMSEC = 0.43; RMSECV = 0.49; 92.54% of explained variance of the response). The 
mean, median and standard deviation of the absolute value of the relative error in calibration, 
which ranged from 0.03 to 1.98%, were, respectively, 0.66, 0.59 and 0.43%. 

Next, a LMS regression PLS values versus true values was performed. No outlier data were 
found, so the LS regression with the 113 remaining samples has slope 0.94 and intercept 
4.07 with a standard error of 0.4 and a coefficient of determination equal to 92.51%. This 
regression is plotted in Fig. 2d. Both p-values for the two hypothesis tests (slope equal to 1 
and intercept equal to 0) were 0.004, so the PLS regression was biased at a 99% confidence 
level. This bias, which was statistically significant, should be assessed in practice because it 
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is equal to an error in the determination with PLS regression of the fat/dry matter ratio 
between 0.78 and 1.14%. However, if desired, the bias could be corrected using the Eq. (5) 

PLS predictedFat/Dry matter 4.07
Fat/Dry matter

0.93


   (5) 

Lastly, the detection capability of the method for the fat-to-dry matter percentage at the 
minimum permitted level of 45% was estimated with α = β = 0.05. The operative curves 
determined for several numbers of replicates and α = 0.05 are depicted in Fig. 5. If 3 
replicates were specifically considered and probabilities of false non-compliance, α, and false 
compliance, β, fixed at 0.05, CDα would be 44.39%, while CDβ would equal 43.78%, curve 
(c).  

The true values of the fat/dry matter ratio were between 50 and 57.5%, higher than the 
minimum allowable quantity (45%) so, as in the case of the dry matter content, the 
conclusion was that the NIT-PLS based method is able to distinguish 43.78% from 45% with 
a probability of false non-compliance equal to 0.05 and a probability of false compliance less 
than 0.05. 
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Figure captions 

 
Fig. 1 NIT spectra of the 124 Zamorano cheese samples in the original calibration set. 

On the X-axis, the spectral region (from 850 to 1050 nm). (a) Raw spectra. On 
the Y-axis, the logarithm of the inverse of the transmittance T of the sample. (b) 
Preprocessed spectra by means of the second derivative (9-point window, 2nd-
order polynomial) of the spectra followed by a SNV transformation. 

Fig. 2 Regression line of the values of each response calculated by its PLS model 
versus the values obtained by the reference methodology. (a) Fat content; (b) dry 
matter content; (c) protein content; and (d) fat/dry matter content. 

Fig. 3 Probability of false compliance, β, versus protein percentage in weight 
(probability of false non-compliance, α, fixed at 5%). (a) One replicate; (b) two 
replicates; (c) three replicates; and (d) infinite replicates. Nominal minimum 
value: 25% in weight. 

Fig. 4 Probability of false compliance, β, versus dry matter percentage in weight 
(probability of false non-compliance, α, fixed at 5%). (a) One replicate; (b) two 
replicates; (c) three replicates; and (d) infinite replicates. Nominal minimum 
value: 55% in weight. 

Fig. 5 Probability of false compliance, β, versus fat/dry matter percentage in weight 
(probability of false non-compliance, α, fixed at 5%).  (a) One replicate; (b) two 
replicates; (c) three replicates; and (d) infinite replicates. Nominal minimum 
value: 45% in weight. 

 



Table 1. Evolution of the development of PLS models to calculate the fat, dry matter and protein contents using the NIT spectra registered as 
predictors. 

Response 
variable 

PLS model 
(number of 
samples) 

Number of 
LV

a
  

Explained 
variance of 
predictors 

(%) 

Explained 
variance of 
response 

(%) 

Sample indexes 
considered to be 

outlier data 
RMSEC

b
 RMSECV

c
 

Fat 

1
st
  

(124) 
7 99.99 93.17 

75 (SR
f
 = 3.36) 

76 (SR = 3.14) 
0.60 0.66 

2
nd

  
(122) 

7 99.99 94.52 27 (SR = -2.53) 0.54 0.59 

3
rd

  
(120) 

6 99.99 94.68 
26 (SR = -2.67) 
28 (SR = -2.60) 

0.53 0.58 

4
th
  

(119) 
7 99.99 95.37  0.50 0.55 

        

Dry matter 

1
st
  

(124) 
4 99.97 90.33 

21 (SR = 3.51) 
22 (SR = 3.54) 
86 (SR = -2.56) 

1.08 1.13 

2
nd  

(121) 
4 99.97 92.98 

24 (SR = -2.51) 
40 (SR = 2.57) 
75 (SR = 2.61) 
76 (SR = 2.70) 
88 (SR = -2.76) 

0.93 0.98 

3
rd

  
(116) 

4 99.97 94.83 
38 (SR = 2.74) 
39 (SR = 2.65) 

0.80 0.84 

4
th
  

(114) 
5 99.98 95.75 87 (SR = -2.64) 0.71 0.75 

5
th
  

(113) 
5 99.98 96.03  0.69 0.74 

        

Table(1-3)



Protein 

1
st
  

(124) 
9 100 95.73 115 (SR = -2.89) 0.30 0.36 

2
nd

  
(123) 

9 100 96.02 
77 (Q

g
 = 0.02;  

       T
2
 
g 
= 23.92) 

0.29 0.35 

3
rd

  
(122) 

10 100 96.21 113 (SR = -2.55) 0.28 0.34 

4
th
  

(121) 
10 100 96.57  0.27 0.33 

(
a
)  Latent variables. 

(
b
)  Root mean square error in calibration. 

(
c
)  Root mean square error in cross-validation.  

(
d
)  Absolute value of relative errors. 

 

 

(
e
)  Standard deviation. 

(
f
)  Standardized residual of data considered y-outliers. 

(
g
) Defined in Partial Least Squares regression subsection. 

 

 



 

Table 2.  Results of the LMS and LS regressions performed with the values of each response calculated from the corresponding PLS model versus true values. 

Response 
variable 

LMS regression results Predicted response vs. True 
response  

Reweighted LS regression results Predicted response vs. True response 

n 
Number of 

outliers 
Outlier 
indexes 

SR
a
 DR

b
 n 0b  1b  R

2
 (%) syx 

p-value for 
the test 

0b = 0 

p-value for the test 

 1b = 1 
Trueness of 
the method 

Fat 
119 

objects 
4 

10 

87 

88 

89 

2.52 

2.60 

2.57 

2.76 

1.75 

2.05 

2.03 

2.16 

115 
objects 

1.59 0.96 96.16 0.45 0.02 0.02 YES  

Dry matter 
113 

objects 
0    

113 
objects 

2.82 0.96 96.03 0.68 0.03 0.03 YES  

Protein 
121 

objects 
9 

4 

24 

50 

51 

52 

74 

82 

99 

112 

2.70 

-2.78 

-3.18 

-2.78 

-2.59 

-3.32 

-2.67 

2.63 

-2.90 

1.70 

2.01 

2.15 

1.91 

1.80 

2.21 

1.78 

1.71 

2.02 

112 
objects 

0.56 0.98 97.82 0.22 0.12 0.13 YES  

(
a
) Standardized residual of the object. 

(
b
) Diagnostic resistance of the object. 



Table 3. Evolution of the development of the PLS calibration to evaluate the fat-to-dry matter ratio, expressed as percentage in 
weight, using the pretreated NIT spectra as predictors. 

PLS model 
(number of 
samples) 

Number 
of 

LV
a
  

Explained 
variance of 
predictors 

(%) 

Explained 
variance of 
response 

(%) 

Sample indexes 
considered to be outlier 

data 
RMSEC

b
 RMSECV

c
 

1
st
  

(124) 
7 99.99 72.83 

21 (SR
f
 = -5.16) 

22 (SR = -4.98) 
0.91 0.99 

2
nd  

(122) 
7 99.99 83.66 

40 (SR = -2.58) 
86 (SR = 2.52) 
87 (SR = 2.87) 
88 (SR = 2.91) 

0.65 0.71 

3
rd

  
(118) 

8 99.99 88.41 
38 (SR = -3.21) 
39 (SR = -3.33) 

0.55 0.62 

4
th
  

(116) 
8 99.99 91.26 75 (SR = 2.70) 0.46 0.52 

5
th
  

(115) 
8 99.99 91.91 76 (SR = 2.61) 0.44 0.51 

6
th
  

(114) 
8 99.99 92.46 

77 (Q
g 
= 0.02;  

        T
2
 
g 
= 29.81) 

0.43 0.48 

7
th
  

(113) 
8 100 92.54  0.43 0.49 

(
a
)  Latent variables. 

(
b
)  Root mean square error in calibration. 

(
c
)  Root mean square error in cross-validation. 

(
d
)  Absolute value of relative errors. 

 

(
e
)  Standard deviation. 

(
f
)  Standardized residual of data considered y-outliers. 

(
g
)  Defined in Partial Least Squares regression subsection. 
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