7,936 research outputs found
Closed form expressions for crack mouth displacements and stress intensity factors for chevron notched short bar and short rod specimens based on experimental compliance measurements
A set of equations are presented describing certain fracture mechanics parameters for chevron notch bar and rod specimens. They are developed by fitting compliance calibration data reported earlier. The equations present the various parameters in their most useful forms. The data encompass the entire range of the specimen geometries most commonly used. Their use will facilitate the testing and analysis of brittle metals, ceramics, and glasses
Fracture toughness of brittle materials determined with chevron notch specimens
The use of chevron-notch specimens for determining the plane strain fracture toughness (K sub Ic) of brittle materials is discussed. Three chevron-notch specimens were investigated: short bar, short rod, and four-point-bend. The dimensionless stress intensity coefficient used in computing K sub Ic is derived for the short bar specimen from the superposition of ligament-dependent and ligament-independent solutions for the straight through crack, and also from experimental compliance calibrations. Coefficients for the four-point-bend specimen were developed by the same superposition procedure, and with additional refinement using the slice model of Bluhm. Short rod specimen stress intensity coefficients were determined only by experimental compliance calibration. Performance of the three chevron-notch specimens and their stress intensity factor relations were evaluated by tests on hot-pressed silicon nitride and sintered aluminum oxide. Results obtained with the short bar and the four-point-bend specimens on silicon nitride are in good agreement and relatively free of specimen geometry and size effects within the range investigated. Results on aluminum oxide were affected by specimen size and chevron-notch geometry, believed due to a rising crack growth resistance curve for the material. Only the results for the short bar specimen are presented in detail
Miniature mobile sensor platforms for condition monitoring of structures
In this paper, a wireless, multisensor inspection system for nondestructive evaluation (NDE) of materials is described. The sensor configuration enables two inspection modes-magnetic (flux leakage and eddy current) and noncontact ultrasound. Each is designed to function in a complementary manner, maximizing the potential for detection of both surface and internal defects. Particular emphasis is placed on the generic architecture of a novel, intelligent sensor platform, and its positioning on the structure under test. The sensor units are capable of wireless communication with a remote host computer, which controls manipulation and data interpretation. Results are presented in the form of automatic scans with different NDE sensors in a series of experiments on thin plate structures. To highlight the advantage of utilizing multiple inspection modalities, data fusion approaches are employed to combine data collected by complementary sensor systems. Fusion of data is shown to demonstrate the potential for improved inspection reliability
Investigation of synthetic aperture methods in ultrasound surface imaging using elementary surface types
Synthetic aperture imaging methods have been employed widely in recent research in non-destructive testing (NDT), but uptake has been more limited in medical ultrasound imaging. Typically offering superior focussing power over more traditional phased array methods, these techniques have been employed in NDT applications to locate and characterise small defects within large samples, but have rarely been used to image surfaces. A desire to ultimately employ ultrasonic surface imaging for bone surface geometry measurement prior to surgical intervention motivates this research, and results are presented for initial laboratory trials of a surface reconstruction technique based on global thresholding of ultrasonic 3D point cloud data. In this study, representative geometry artefacts were imaged in the laboratory using two synthetic aperture techniques; the Total Focusing Method (TFM) and the Synthetic Aperture Focusing Technique (SAFT) employing full and narrow synthetic apertures, respectively. Three high precision metallic samples of known geometries (cuboid, sphere and cylinder) which featured a range of elementary surface primitives were imaged using a 5MHz, 128 element 1D phased array employing both SAFT and TFM approaches. The array was manipulated around the samples using a precision robotic positioning system, allowing for repeatable ultrasound derived 3D surface point clouds to be created. A global thresholding technique was then developed that allowed the extraction of the surface profiles, and these were compared with the known geometry samples to provide a quantitative measure of error of 3D surface reconstruction. The mean errors achieved with optimised SAFT imaging for the cuboidal, spherical and cylindrical samples were 1.3 mm, 2.9 mm and 2.0 mm respectively, while those for TFM imaging were 3.7 mm, 3.0 mm and 3.1 mm, respectively. These results were contrary to expectations given the higher information content associated with the TFM images. However, it was established that the reduced error associated with the SAFT technique was associated with significant reductions in side lobe levels of approximately 24dB in comparison to TFM imaging, although this came at the expense of reduced resolution and coverage
Analysis of some compliance calibration data for chevron-notch bar and rod specimens
A set of equations describing certain fracture mechanics parameters for chevron-notch bar and rod specimens are presented. They are developed by fitting earlier compliance calibration data. The difficulty in determining the minimum stress intensity coefficient and the critical crack length is discussed
The influence of composition, annealing treatment, and texture on the fracture toughness of Ti-5Al-2.5Sn plate at cryogenic temperatures
The plane strain fracture toughness K sub Ic and conventional tensile properties of two commercially produced one-inch thick Ti-5Al-2.5Sn plates were determined at cryogenic temperatures. One plate was extra-low interstitial (ELI) grade, the other normal interstitial. Portions of each plate were mill annealed at 1088 K (1500 F) followed by either air cooling or furnace cooling. The tensile properties, flow curves, and K sub Ic of these plates were determined at 295 K (room temperature), 77 K (liquid nitrogen temperature), and 20 K (liquid hydrogen temperature)
Wireless recording of the calls of Rousettus aegyptiacus and their reproduction using electrostatic transducers
Bats are capable of imaging their surroundings in great detail using echolocation. To apply similar methods to human engineering systems requires the capability to measure and recreate the signals used, and to understand the processing applied to returning echoes. In this work, the emitted and reflected echolocation signals of Rousettus aegyptiacus are recorded while the bat is in flight, using a wireless sensor mounted on the bat. The sensor is designed to replicate the acoustic gain control which bats are known to use, applying a gain to returning echoes that is dependent on the incurred time delay. Employing this technique allows emitted and reflected echolocation calls, which have a wide dynamic range, to be recorded. The recorded echoes demonstrate the complexity of environment reconstruction using echolocation. The sensor is also used to make accurate recordings of the emitted calls, and these calls are recreated in the laboratory using custom-built wideband electrostatic transducers, allied with a spectral equalization technique. This technique is further demonstrated by recreating multi-harmonic bioinspired FM chirps. The ability to record and accurately synthesize echolocation calls enables the exploitation of biological signals in human engineering systems for sonar, materials characterization and imaging
Flux calibration of the AAO/UKST SuperCOSMOS H-alpha Survey
The AAO/UKST SuperCOSMOS H Survey (SHS) was, when completed in 2003,
a powerful addition to extant wide-field surveys. The combination of areal
coverage, spatial resolution and sensitivity in a narrow imaging band, still
marks it out today as an excellent resource for the astronomical community. The
233 separate fields are available online in digital form, with each field
covering 25 square degrees. The SHS has been the motivation for equivalent
surveys in the north, and new digital H surveys now beginning in the
south such as VPHAS+. It has been the foundation of many important discovery
projects with the Macquarie/AAO/Strasbourg H planetary nebula project
being a particularly successful example. However, the full potential of the SHS
has been hampered by lack of a clear route to acceptable flux calibration from
the base photographic data. We have determined the calibration factors for 170
individual SHS fields, and present a direct pathway to the measurement of
integrated H fluxes and surface brightnesses for resolved nebulae
detected in the SHS. We also include a catalogue of integrated H fluxes
for 100 planetary and other nebulae measured from the SHS, and use these
data to show that fluxes, accurate to 0.10 - 0.14 dex (25-35 per
cent), can be obtained from these fields. For the remaining 63 fields, a mean
calibration factor of 12.0 counts pix R can be used, allowing the
determination of reasonable integrated fluxes accurate to better than 0.2
dex (50 per cent). We outline the procedures involved and the caveats
that need to be appreciated in achieving such flux measurements. This paper
forms a handy reference source that will significantly increase the scientific
utility of the SHS.Comment: 14 pages, 12 figures, 2 tables (plus 7 pp. of supplementary online
information). Version to appear in MNRA
Implications of Constraints on Mass Parameters in the Higgs Sector of the Nonlinear Supersymmetric SU(5) Model
The Higgs sector of the minimal nonlinear supersymmetric SU(5) model contains
three mass parameters. Although these mass parameters are essentially free at
the electroweak scale, they might have particular values if they evolve from a
particular constraints at the GUT scale through the RG equations. By assuming a
number of simple constraints on these mass parameters at the GUT scale, we
obtain their values at the electroweak scale through the RG equations in order
to investigate the phenomenological implications. Some of them are found to be
consistent with the present experimental data.Comment: 23 pages, 10 figure
- …