329 research outputs found
Surface water flood forecasting for urban communities
Key findings and recommendations:
âą This research has addressed the challenge of surface water flood forecasting by producing the UKâs first operational surface water flood risk forecast with a 24-hour lead time. This was successfully used in Glasgow at the Commonwealth Games in 2014.
âą The methodology of the Glasgow Pilot has been developed to use nationally available datasets and a transferrable approach which will help urban areas in Scotland improve their resilience to and preparedness for future flooding.
âą It also delivered a novel method for forecasting the impacts of flooding in real-time and increased knowledge on communicating uncertainties in flood risk.
âą A real-time forecasting system for surface water flooding from intense rainfall needs to use models that represent surface runoff production, surface water inundation and movement, and how water travels via surface and sub-surface pathways, including urban sewerage and drainage networks. Ensemble rainfall prediction models are key to quantifying uncertainty in forecasting the rainfall that causes surface water flooding.
âą Detailed surface water flood inundation models exist and are widely used in design and research activities, but none were found to be ready for real-time use. The Grid-to-Grid (G2G) distributed hydrological model was chosen for used in the Glasgow Pilot as it can provide ensemble forecasts of surface water flooding, and takes account of the intensity and pattern of rainfall, land cover and slope, and antecedent conditions.
âą The research developed a novel methodology for impact assessment that links surface runoff to the severity of flooding impacts on people, property and transport. Use is made of a library of information based on SEPAâs Regional Pluvial (rainfall-related) Flood Hazard maps.
âą For the Glasgow Pilot, G2G was operated over a 10km by 10km area encompassing Glasgowâs East End and the main areas of activity for the 2014 Commonwealth Games. The research team developed an operational application, called FEWS Glasgow, to support running the model in real-time and reporting on the likely impacts of surface water flooding. A new Daily Glasgow Daily Surface Water Flood Forecast was designed and produced based on operational requirements and emergency responder feedback
Complete two-loop effective potential approximation to the lightest Higgs scalar boson mass in supersymmetry
I present a method for accurately calculating the pole mass of the lightest
Higgs scalar boson in supersymmetric extensions of the Standard Model, using a
mass-independent renormalization scheme. The Higgs scalar self-energies are
approximated by supplementing the exact one-loop results with the second
derivatives of the complete two-loop effective potential in Landau gauge. I
discuss the dependence of this approximation on the choice of renormalization
scale, and note the existence of particularly poor choices which fortunately
can be easily identified and avoided. For typical input parameters, the
variation in the calculated Higgs mass over a wide range of renormalization
scales is found to be of order a few hundred MeV or less, and is significantly
improved over previous approximations.Comment: 5 pages, 1 figure. References added, sample test model parameters
listed, minor wording change
Alteration layer formation of Ca- and Zn-oxide bearing alkali borosilicate glasses for immobilisation of UK high level waste: A vapour hydration study
The UK high level nuclear waste glass modified with CaO/ZnO was investigated using the vapour phase hydration test, performed at 200 °C, with the aim of understanding the impact of the modification on the chemical composition and microstructure of the alteration layer. Experiments were undertaken on non-modified and CaO/ZnO-modified base glass, with or without 25 wt% of simulant Magnox waste calcine. The modification resulted in a dramatic reduction in gel layer thickness and also a reduction in the reaction rate, from 3.4 ± 0.3 g mâ2 dâ1 without CaO/ZnO modification to 0.9 ± 0.1 g mâ2 dâ1 with CaO/ZnO. The precipitated phase assemblage for the CaO/ZnO-modified compositions was identified as hydrated Ca- and Zn-bearing silicate phases, which were absent from the non-modified counterpart. These results are in agreement with other recent studies showing the beneficial effects of ZnO additions on glass durability
CP Violation in Supersymmetric U(1)' Models
The supersymmetric CP problem is studied within superstring-motivated
extensions of the MSSM with an additional U(1)' gauge symmetry broken at the
TeV scale. This class of models offers an attractive solution to the mu problem
of the MSSM, in which U(1)' gauge invariance forbids the bare mu term, but an
effective mu parameter is generated by the vacuum expectation value of a
Standard Model singlet S which has superpotential coupling of the form SH_uH_d
to the electroweak Higgs doublets. The effective mu parameter is thus
dynamically determined as a function of the soft supersymmetry breaking
parameters, and can be complex if the soft parameters have nontrivial
CP-violating phases. We examine the phenomenological constraints on the
reparameterization invariant phase combinations within this framework, and find
that the supersymmetric CP problem can be greatly alleviated in models in which
the phase of the SU(2) gaugino mass parameter is aligned with the soft
trilinear scalar mass parameter associated with the SH_uH_d coupling. We also
study how the phases filter into the Higgs sector, and find that while the
Higgs sector conserves CP at the renormalizable level to all orders of
perturbation theory, CP violation can enter at the nonrenormalizable level at
one-loop order. In the majority of the parameter space, the lightest Higgs
boson remains essentially CP even but the heavier Higgs bosons can exhibit
large CP-violating mixings, similar to the CP-violating MSSM with large mu
parameter.Comment: 29 pp, 3 figs, 2 table
Electron Scattering From High-Momentum Neutrons in Deuterium
We report results from an experiment measuring the semi-inclusive reaction
where the proton is moving at a large angle relative to the
momentum transfer. If we assume that the proton was a spectator to the reaction
taking place on the neutron in deuterium, the initial state of that neutron can
be inferred. This method, known as spectator tagging, can be used to study
electron scattering from high-momentum (off-shell) neutrons in deuterium. The
data were taken with a 5.765 GeV electron beam on a deuterium target in
Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section
was extracted for different values of final-state missing mass ,
backward proton momentum and momentum transfer . The data
are compared to a simple PWIA spectator model. A strong enhancement in the data
observed at transverse kinematics is not reproduced by the PWIA model. This
enhancement can likely be associated with the contribution of final state
interactions (FSI) that were not incorporated into the model. A ``bound neutron
structure function'' was extracted as a function of and
the scaling variable at extreme backward kinematics, where effects of
FSI appear to be smaller. For MeV/c, where the neutron is far
off-shell, the model overestimates the value of in the region of
between 0.25 and 0.6. A modification of the bound neutron structure
function is one of possible effects that can cause the observed deviation.Comment: 33 pages RevTeX, 9 figures, to be submitted to Phys. Rev. C. Fixed 1
Referenc
Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgersâ equation
In this paper we present rigorous a posteriori L 2 error bounds for reduced basis approximations of the unsteady viscous Burgersâ equation in one space dimension. The a posteriori error estimator, derived from standard analysis of the error-residual equation, comprises two key ingredientsâboth of which admit efficient Offline-Online treatment: the first is a sum over timesteps of the square of the dual norm of the residual; the second is an accurate upper bound (computed by the Successive Constraint Method) for the exponential-in-time stability factor. These error bounds serve both Offline for construction of the reduced basis space by a new POD-Greedy procedure and Online for verification of fidelity. The a posteriori error bounds are practicable for final times (measured in convective units) TâO(1) and Reynolds numbers Îœ[superscript â1]â«1; we present numerical results for a (stationary) steepening front for T=2 and 1â€Îœ[superscript â1]â€200.United States. Air Force Office of Scientific Research (AFOSR Grant FA9550-05-1-0114)United States. Air Force Office of Scientific Research (AFOSR Grant FA-9550-07-1-0425)Singapore-MIT Alliance for Research and Technolog
eta-prime photoproduction on the proton for photon energies from 1.527 to 2.227 GeV
Differential cross sections for the reaction gamma p -> eta-prime p have been
measured with the CLAS spectrometer and a tagged photon beam with energies from
1.527 to 2.227 GeV. The results reported here possess much greater accuracy
than previous measurements. Analyses of these data indicate for the first time
the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710)
resonances, known to couple strongly to the eta N channel in photoproduction on
the proton, and the importance of j=3/2 resonances in the process.Comment: 6 pages, 3 figure
Measurement of the Deuteron Structure Function F2 in the Resonance Region and Evaluation of Its Moments
Inclusive electron scattering off the deuteron has been measured to extract
the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer
(CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement
covers the entire resonance region from the quasi-elastic peak up to the
invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum
transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous
measurements of the proton structure function F2 and cover a similar
two-dimensional region of Q2 and Bjorken variable x. Determination of the
deuteron F2 over a large x interval including the quasi-elastic peak as a
function of Q2, together with the other world data, permit a direct evaluation
of the structure function moments for the first time. By fitting the Q2
evolution of these moments with an OPE-based twist expansion we have obtained a
separation of the leading twist and higher twist terms. The observed Q2
behaviour of the higher twist contribution suggests a partial cancellation of
different higher twists entering into the expansion with opposite signs. This
cancellation, found also in the proton moments, is a manifestation of the
"duality" phenomenon in the F2 structure function
- âŠ