365 research outputs found

    Supersymmetric Effects in Deep Inelastic Neutrino-Nucleus Scattering

    Get PDF
    We compute the supersymmetric (SUSY) contributions to neutrino (antineutrino)-nucleus deep inelastic scattering in the Minimal Supersymmetric Standard Model (MSSM). We consider the ratio of neutral current to charged current cross sections, RÎœR_{\nu} and RΜˉR_{\bar \nu}, and compare with the deviations of these quantities from the Standard Model predictions implied by the recent NuTeV measurement. After performing a model-independent analysis, we find that SUSY loop corrections generally have the opposite sign from the NuTeV anomaly. We discuss one scenario in which a right-sign effect arises, and show that it is ruled out by other precision data. We also study for R parity-violating (RPV) contributions. Although RPV effects could, in principle, reproduce the NuTeV anomaly, such a possibility is also ruled out by other precision electroweak measurements.Comment: 30 pages, 13 figure

    Matching Lenses: Alignment and View Update

    Get PDF
    Bidirectional programming languages have been proposed as a practical approach to the view update problem. Programs in these languages, often called lenses, can be read in two ways— from left to right as functions mapping sources to views, and from right to left as functions mapping updated views back to updated sources. Lenses address the view update problem by making it possible to define a view and its associated update policy together. One issue that has not received sufficient attention in the design of bidirectional languages is alignment. In general, to correctly propagate an update to a view, a lens needs to match up the pieces of the edited view with corresponding pieces of the underlying source. Unfortunately, existing bidirectional languages are extremely limited in their treatment of alignment—they only support simple strategies that do not suffice for many examples of practical interest. In this paper, we propose a novel framework of matching lenses that extends basic lenses with new mechanisms for calculating and using alignments. We enrich the types of lenses with “chunks” that identify the locations of data that should be re-aligned after updates, and we formulate refined behavioral laws that capture essential constraints on the handling of chunks. To demonstrate the utility of our approach, we develop a core language of matching lenses for string data, and we extend it with primitives for describing a number of useful alignment heuristics

    Dispersive properties of quasi-phase-matched optical parametric amplifiers

    Get PDF
    The dispersive properties of non-degenerate optical parametric amplification in quasi-phase-matched (QPM) nonlinear quadratic crystals with an arbitrary grating profile are theoretically investigated in the no-pump-depletion limit. The spectral group delay curve of the amplifier is shown to be univocally determined by its spectral power gain curve through a Hilbert transform. Such a constraint has important implications on the propagation of spectrally-narrow optical pulses through the amplifier. In particular, it is shown that anomalous transit times, corresponding to superluminal or even negative group velocities, are possible near local minima of the spectral gain curve. A possible experimental observation of such effects using a QPM Lithium-Niobate crystal is suggested.Comment: submitted for publicatio

    Applications of patching to quadratic forms and central simple algebras

    Full text link
    This paper provides applications of patching to quadratic forms and central simple algebras over function fields of curves over henselian valued fields. In particular, we use a patching approach to reprove and generalize a recent result of Parimala and Suresh on the u-invariant of p-adic function fields, for p odd. The strategy relies on a local-global principle for homogeneous spaces for rational algebraic groups, combined with local computations.Comment: 48 pages; connectivity now required in the definition of rational group; beginning of Section 4 reorganized; other minor change

    Virtual Effects of Split SUSY in Higgs Productions at Linear Colliders

    Full text link
    In split supersymmetry the gauginos and higgsinos are the only supersymmetric particles possibly accessible at foreseeable colliders like the CERN Large Hadron Collider (LHC) and the International Linear Collider (ILC). In order to account for the cosmic dark matter measured by WMAP, these gauginos and higgsinos are stringently constrained and could be explored at the colliders through their direct productions and/or virtual effects in some processes. The clean environment and high luminosity of the ILC render the virtual effects of percent level meaningful in unraveling the new physics effects. In this work we assume split supersymmetry and calculate the virtual effects of the WMAP-allowed gauginos and higgsinos in Higgs productions e+e- -> Z h and e+e- -> \nu_e \bar_\nu_e h through WW fusion at the ILC. We find that the production cross section of e+e- -> Zh can be altered by a few percent in some part of the WMAP-allowed parameter space, while the correction to the WW-fusion process e+e- -> \nu_e \bar_\nu_e h is below 1%. Such virtual effects are correlated with the cross sections of chargino pair productions and can offer complementary information in probing split supersymmetry at the colliders.Comment: more discussions added (7 pages, 10 figs

    ADAM12 is a circulating marker for stromal activation in pancreatic cancer and predicts response to chemotherapy

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma that harbors tumor-promoting properties. No good biomarkers exist to monitor the effect of stromal targeting therapies or to predict response. We set out to identify such non-invasive markers for PDAC stroma and predict response to therapy. Gene expression datasets, co-culture experiments, xenografts, and patient samples were analyzed. Serum samples were measured from a cohort of 58 resected patients, and 87 metastatic or locally advanced PDAC patients. Baseline and follow-up levels were assessed in 372 additional metastatic PDAC patients who received nab-paclitaxel with gemcitabine (n = 184) or gemcitabine monotherapy (n = 188) in the phase III MPACT trial. Increased levels of ADAM12 were found in PDAC patients compared to healthy controls (p < 0.0001, n = 157 and n = 38). High levels of ADAM12 significantly associated with poor outcome in resected PDAC (HR 2.07, p = 0.04). In the MPACT trial survival was significantly longer for patients who received nab-paclitaxel and had undetectable ADAM12 levels before treatment (OS 12.3 m vs 7.9 m p = 0.0046). Consistently undetectable or decreased ADAM12 levels during treatment significantly associated with longer survival as well (OS 14.4 m and 11.2 m, respectively vs 8.3, p = 0.0054). We conclude that ADAM12 is a blood-borne proxy for stromal activation, the levels of which have prognostic significance and correlate with treatment benefit

    Parametrization of nonlinear and chaotic oscillations in driven beam-plasma diodes

    Get PDF
    Nonlinear phenomena in a driven plasma diode are studied using a fluid code and the particle-in-cell simulation code XPDPI. When a uniform electron beam is injected to a bounded diode filled with uniform ion background, the beam is destabilized by the Pierce instability and a perturbation grows to exhibit nonlinear oscillations including chaos. Two standard routes to chaos, period doubling and quasiperiodicity, are observed. Mode lockings of various winding numbers are observed in an ac driven system. A new diagnostic quantity is used to parametrize various nonlinear oscillations.open10

    A tetravalent live attenuated dengue virus vaccine stimulates balanced immunity to multiple serotypes in humans

    Get PDF
    The four-dengue virus (DENV) serotypes infect several hundred million people annually. For the greatest safety and efficacy, tetravalent DENV vaccines are designed to stimulate balanced protective immunity to all four serotypes. However, this has been difficult to achieve. Clinical trials with a leading vaccine demonstrated that unbalanced replication and immunodominance of one vaccine component over others can lead to low efficacy and vaccine enhanced severe disease. The Laboratory of Infectious Diseases at the National Institutes of Health has developed a live attenuated tetravalent DENV vaccine (TV003), which is currently being tested in phase 3 clinical trials. Here we report, our study to determine if TV003 stimulate balanced and serotype-specific (TS) neutralizing antibody (nAb) responses to each serotype. Serum samples from twenty-one dengue-naive individuals participated under study protocol CIR287 (ClinicalTrials.gov NCT02021968) are analyzed 6 months after vaccination. Most subjects (76%) develop TS nAbs to 3 or 4 DENV serotypes, indicating immunity is induced by each vaccine component. Vaccine-induced TS nAbs map to epitopes known to be targets of nAbs in people infected with wild type DENVs. Following challenge with a partially attenuated strain of DENV2, all 21 subjects are protected from the efficacy endpoints. However, some vaccinated individuals develop post challenge nAb boost, while others mount post-challenge antibody responses that are consistent with sterilizing immunity. TV003 vaccine induced DENV2 TS nAbs are associated with sterilizing immunity. Our results indicate that nAbs to TS epitopes on each serotype may be a better correlate than total levels of nAbs currently used for guiding DENV vaccine development

    Star Formation and Dynamics in the Galactic Centre

    Full text link
    The centre of our Galaxy is one of the most studied and yet enigmatic places in the Universe. At a distance of about 8 kpc from our Sun, the Galactic centre (GC) is the ideal environment to study the extreme processes that take place in the vicinity of a supermassive black hole (SMBH). Despite the hostile environment, several tens of early-type stars populate the central parsec of our Galaxy. A fraction of them lie in a thin ring with mild eccentricity and inner radius ~0.04 pc, while the S-stars, i.e. the ~30 stars closest to the SMBH (<0.04 pc), have randomly oriented and highly eccentric orbits. The formation of such early-type stars has been a puzzle for a long time: molecular clouds should be tidally disrupted by the SMBH before they can fragment into stars. We review the main scenarios proposed to explain the formation and the dynamical evolution of the early-type stars in the GC. In particular, we discuss the most popular in situ scenarios (accretion disc fragmentation and molecular cloud disruption) and migration scenarios (star cluster inspiral and Hills mechanism). We focus on the most pressing challenges that must be faced to shed light on the process of star formation in the vicinity of a SMBH.Comment: 68 pages, 35 figures; invited review chapter, to be published in expanded form in Haardt, F., Gorini, V., Moschella, U. and Treves, A., 'Astrophysical Black Holes'. Lecture Notes in Physics. Springer 201
    • 

    corecore