
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

1-8-2010

Matching Lenses: Alignment and View Update Matching Lenses: Alignment and View Update

Barbosa M.J. Davi
Ecole Polytechnique

Cretin Julien
Ecole Polytechnique

Foster Nate
Princeton University

Greenberg Michael
University of Pennsylvania

Benjamin C. Pierce
University of Pennsylvania, bcpierce@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Barbosa M.J. Davi, Cretin Julien, Foster Nate, Greenberg Michael, and Benjamin C. Pierce, "Matching
Lenses: Alignment and View Update", . January 2010.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-10-01.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/915
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76363361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/915
mailto:repository@pobox.upenn.edu

Matching Lenses: Alignment and View Update Matching Lenses: Alignment and View Update

Abstract Abstract
Bidirectional programming languages have been proposed as a practical approach to the view update
problem. Programs in these languages, often called lenses, can be read in two ways— from left to right as
functions mapping sources to views, and from right to left as functions mapping updated views back to
updated sources. Lenses address the view update problem by making it possible to define a view and its
associated update policy together.

One issue that has not received sufficient attention in the design of bidirectional languages is alignment.
In general, to correctly propagate an update to a view, a lens needs to match up the pieces of the edited
view with corresponding pieces of the underlying source. Unfortunately, existing bidirectional languages
are extremely limited in their treatment of alignment—they only support simple strategies that do not
suffice for many examples of practical interest.

In this paper, we propose a novel framework of matching lenses that extends basic lenses with new
mechanisms for calculating and using alignments. We enrich the types of lenses with “chunks” that
identify the locations of data that should be re-aligned after updates, and we formulate refined behavioral
laws that capture essential constraints on the handling of chunks. To demonstrate the utility of our
approach, we develop a core language of matching lenses for string data, and we extend it with primitives
for describing a number of useful alignment heuristics.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-10-01.

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/915

https://repository.upenn.edu/cis_reports/915

Matching Lenses: Alignment and View Update

Davi M. J. Barbosa

École Polytechnique

Julien Cretin

École Polytechnique

Nate Foster

Princeton University

Michael Greenberg

University of Pennsylvania

Benjamin C. Pierce

University of Pennsylvania

Technical Report MS-CIS-10-01
Department of Computer and Information Science

University of Pennsylvania

January 8, 2010

Abstract
Bidirectional programming languages have been proposed as a practical approach to the view
update problem. Programs in these languages, often called lenses, can be read in two ways—
from left to right as functions mapping sources to views, and from right to left as functions
mapping updated views back to updated sources. Lenses address the view update problem
by making it possible to define a view and its associated update policy together.
One issue that has not received sufficient attention in the design of bidirectional languages is
alignment. In general, to correctly propagate an update to a view, a lens needs to match up the
pieces of the edited view with corresponding pieces of the underlying source. Unfortunately,
existing bidirectional languages are extremely limited in their treatment of alignment—they
only support simple strategies that do not suffice for many examples of practical interest.
In this paper, we propose a novel framework of matching lenses that extends basic lenses
with new mechanisms for calculating and using alignments. We enrich the types of lenses
with “chunks” that identify the locations of data that should be re-aligned after updates, and
we formulate refined behavioral laws that capture essential constraints on the handling of
chunks. To demonstrate the utility of our approach, we develop a core language of matching
lenses for string data, and we extend it with primitives for describing a number of useful
alignment heuristics.

1

1. Introduction
View update is a classic problem in data management. Given a view and an update to the view, the problem concerns
finding an update to the source that reflects the modification made to the view. Recently, we and others have made
new progress on this old problem by adopting a linguistic approach—developing programming languages in which
every expression denotes both a function mapping sources to views as well as one mapping updated views back to
updated sources. These bidirectional programming languages provide an effective way for programmers to address
instances of the view update problem by giving them a tool for defining a view and its associated update policy
together.

A number of languages for describing bidirectional transformations, often called lenses, have been proposed [3,
4, 5, 8, 9, 12, 15, 16, 18, 19, 20, 21, 22, 23]. Formally, a lens l mapping between sets S of “sources”, C of
“complements”, and V of “views” comprises four total functions

l.get ∈ S → V
l.res ∈ S → C
l.put ∈ V → C → S

l.create ∈ V → S

that obey the following “round-tripping” laws for every source s in S, complement c in C, and view v in V :
l.get (l.put v c) = v (PUTGET)

l.get (l.create v) = v (CREATEGET)

l.put (l.get s) (l.res s) = s (GETPUT)

We write S
C⇐⇒V for the set of all lenses between S, C, and V and we refer to them as basic lenses to distinguish

them from the other kinds of lenses described in this paper. 1

The get function computes a view from a source. The res (for “residue”) function computes a complement—a
structure that records (at least) the information from the source that is not reflected in the view. The other two
functions handle updates: put takes an updated view and a complement and weaves them together to produce
an updated source, while create handles the case where we need to propagate an update to a view but have no
complement available. It builds a new source from the view directly, filling in any missing information with defaults.
The round-tripping laws are closely related to conditions on view update translators that have been explored in the
literature [1, 7, 13]. The PUTGET and CREATEGET laws require that updates to the view be propagated exactly to
the source—i.e., given a modified view and a complement, the updated source produced by put must map back via
get to the very same view, and similarly for create. The GETPUT law requires that put return the original source
unmodified whenever the update to the view is a no-op.

In previous work [3], we identified alignment as a serious problem that comes up when lenses are used with
ordered data. In general, the get component of a lens may hide some of the information in the source (formally, it
may be a non-injective function), so the put function needs to reintegrate the information in the complement with
the modified information in the view. When the source and view are ordered structures, and when the update to
the view breaks the correspondence between pieces of the source and pieces of the view, doing this recombination
correctly requires realigning the pieces of the source to reflect the the new correspondence with the pieces of the
updated view. However, most proposals for lenses only have limited capabilities with respect to alignment—they
work by position—so they are essentially useless for manipulating ordered structures.

To address this problem, we proposed extending lenses with a simple alignment mechanism based on keys. In a
dictionary lens, the programmer identifies the reorderable chunks of the source and specifies how to compute a key
for each chunk. The put function uses keys instead of positions to locate a source chunk for each piece of the view.
Dictionary lenses work well in situations where chunks have stable keys, but they are not a general solution. If the
1 Readers familiar with previous presentations of basic lenses will notice that we are providing put with an explicit complement structure
instead of the original source. This is a minor change—we can recover the original definition by simply taking the set of complements to be
S, the set of sources, and defining res to be the identity function on S.

2

.

.

.. ..

.. ..

.. ..

.. ..

..

.

.

.. ..

.. ..

.. ..

.. ..

..

.

.

.. ..

.. ..

.. ..

.. ..

. ..

.

.

.. ..

.. ..

.. ..-

.. ..

. ..+
(a) positional (b) minimizing edit distance (c) non-crossing (d) operation-based

Figure 1. Alignment strategies

source chunks do not have a natural key (e.g., because the chunks are blocks of otherwise unstructured text) or if
keys may be edited, the simple alignment strategy that is “baked in” to dictionary lenses does not suffice. Moreover,
the behavioral laws that dictionary lenses obey are rather weak. They fail to capture fundamental constraints on the
handling of chunks, and they allow lenses with unintuitive behavior—e.g., lenses that do not translate reorderings
on chunks in the view to reorderings on source chunks.

Our goal in this paper is to develop a completely generic alignment mechanism for lenses that overcomes these
limitations and addresses the issue of ordered data once and for all. To this end, we propose a novel framework
of matching lenses that decouples the handling of rigidly ordered and reorderable information from each other.
This explicit separation of concerns provides a clean interface for supplying a lens with clear directives about
how the source and view should be aligned, and it yields an extremely flexible framework that can be instantiated
with arbitrary functions for computing alignments. Figure 1 depicts several common alignment strategies: (a)
positional, (b) minimizing the total edit distance between matched chunks, (c) minimizing total edit distance but only
considering “non-crossing” alignments (i.e., similar to longest common sequence), and (d) extracting an alignment
from the actual update operation applied to the view. The matching lens framework accommodates each of these.

Operationally, we decouple the handling of rigidly ordered and reorderable information by splitting the repre-
sentation of complements into two pieces: a rigid complement that records the source information that should be
handled positionally and a resource that stores the information extracted from the reorderable chunks in the source.
The resource provides a means of supplying a lens with explicit alignment information since rearranging its ele-
ments according to a given correspondence yields a pre-aligned structure in which every element matches up with
the specified chunk in the view.

At the level of semantics, we enrich the types of matching lenses with explicit notions of what constitutes a
reorderable “chunk,” and we add new behavioral laws that capture essential constraints on the handling of chunks.
These laws stipulate that matching lenses must carry chunks in the source through to chunks in the view, and
vice versa. They can be used to derive other natural properties—e.g., that matching lenses translate reorderings to
reorderings.

Finally, to demonstrate the utility of our framework, we develop a collection of primitives for defining matching
lenses over string data. We work with strings, rather than richer structures such as trees or relations, primarily
because strings are a simple setting for exploring foundational issues. However, strings are also pervasive in the real
world, and we believe that our matching lens primitives will also be pragmatically useful.2 We define coercions that
convert between basic lenses and matching lenses, reinterpret the familiar regular operators (union, concatenation,
and Kleene star) as matching lenses, and show that matching lenses are closed under composition. We also present
primitives for specifying, combining, and tuning alignment functions in terms of “species”, “tags”, “keys”, and
“thresholds.”

Our contributions can be summarized as follows:

1. We define a novel semantic space of matching lenses that enriches the types of lenses with chunks and adds
new behavioral laws ensuring that chunks are handled correctly. Unlike dictionary lenses, which use a single

2 Indeed, dictionary lenses, which also have strings as their data model, have been used in industry [18].

3

alignment strategy, matching lenses are a flexible framework that can be instantiated with many different
strategies.

2. We define a core language of primitive matching lenses for transforming strings, and we prove (in the appendix)
that each primitive is a well behaved matching lens.

3. We describe several alignment strategies we have developed in our implementation, and we show how these
strategies can be tuned using notions of “species”, “tags”, “keys” and, “thresholds.”

The next section introduces a simple example that illustrates the problems that arise with ordered data and the
essential ingredients of our solution. Section 3 defines the semantic space of matching lenses and develops some of
their essential properties. Section 4 defines a core language of matching lens primitives for string data. Section 5
presents primitives for describing and tuning alignment strategies. Section 6 describes extensions to the framework.
Section 7 discusses related work. We discuss future work in Section 8.

2. Example
Let’s start with a simple example that illustrates the complications that arise when lenses are used to manipulate
ordered data. Suppose that the source structure is a string containing the nationality, bib number, team code, finishing
time, and name for cyclists in a road race...

GBR 213 THR 6h42’45" CAVENDISH Mark
GER 74 CTT 6h42’45" HAUSSLER Heinrich
NOR 75 CTT 6h42’49" HUSHOVD Thor
AUS 182 QST 6h42’49" DAVIS Alan
ITA 177 LPR 6h42’49" PETACCHI Alessandro

...and the view is a string containing just the finish time, reformatted name, and expanded team name for each rider:

6h42’45" Mark Cavendish (Team Columbia-HTC)
6h42’45" Heinrich Haussler (Cervelo Test Team)
6h42’49" Thor Hushovd (Cervelo Test Team)
6h42’49" Alan Davis (Quick Step)
6h42’49" Alessandro Petacchi (LPR Brakes-Farnese Vini)

Figure 2 shows a (basic, non-matching) lens in the Boomerang language [10] that computes the view. The first
few lines of the program define regular expressions that describe various pieces of the source—nationalities, bib
numbers, team codes, etc. We write (.) for concatenation and use standard POSIX notation for union (|), repetition
(*, +, {1,3}, etc.), and character sets ([a-z], [0-9], etc.).

For the sake of the example, we have written the top-level riders lens as the composition of two smaller lenses.
In the first phase, the lens l1 processes each line of the source. It deletes the nationality, copies the bib number,
swaps the order of the team and finish time, rewrites the name from “LAST First” to “First LAST”, and removes
extra whitespace. The (copy E) primitive recognizes a string matching E in the source and copies it to the view
and the (E <-> u) primitive recognizes a string matching E in the source and adds the constant string u to the view.
The lenses (del E) and (ins u) are abbreviations for (E <-> "") and ("" <-> u) respectively. The overloaded
operators (.), (|), and (*) denote union, concatenation, and iteration of lenses. The swap operator, written (~), is
like concatenation, but inverts the order of the strings in the view.

In the second phase, the lens l2 takes a line of text produced by l1 as output and processes it further. It deletes
the bib number, copies the finish time, reformats the name from “First LAST” to “First Last”, and expands the
abbreviated team name, wrapping the result in parentheses and placing it before the rider’s name. The riders lens
is the sequential composition of (lines l1), which iterates l1 over a list of lines, and (lines l2).

Returning to the example, suppose that we update the view by removing Cavendish, swapping the positions of
Hushovd and Davis in the final classification, and correcting the spelling of Davis’s first name (such adjustments to
preliminary results are often made by race officials after consulting photos of the finish):

4

(* regular expressions *)
let L,U,N : regexp * regexp * regexp = [a-z], [A-Z], [0-9]
let NAT : regexp = U{3}
let BIB : regexp = (N . " " | N{2} . " " | N{3})
let TEAM : regexp = U{3}
let TIME : regexp = N+ . "h" . N{2} . "’" . N{2} . "\""
let LN, FN : regexp * regexp = U+, (U . L*)
let NAME : regexp = LN . " " . FN

(* helpers *)
let parens (l:lens) : lens = ins "(" . l . ins ")"
let lines (l:lens) : lens = (l . copy "\n")*

let nat1 : lens = del (NAT . " ")
let bib1 : lens = copy BIB . del " "
let team1 : lens = copy TEAM . del " "
let time1 : lens = copy TIME . del " "
let name1 : lens = copy LN ~ (copy " " ~ copy FN)

let bib2 : lens = del BIB
let time2 : lens = copy TIME
let team2 : lens =

parens (...| "CTT" <-> "Cervelo Test Team" |...)
let name2 : lens =

copy U . L* . copy " " .
copy U . ("A" <-> "a" |...| "Z" <-> "z")* . ins " "

(* main lens *)
let l1 : lens = nat1 . bib1 . (team1 ~ time1) . name1
let l2 : lens = bib2 . time2 . (team2 ~ name2)
let riders : lens = (lines l1 ; lines l2)

Figure 2. Boomerang source code for the riders lens

6h42’45" Heinrich Haussler (Cervelo Test Team)
6h42’49" Allan Davis (Quick Step)
6h42’49" Thor Hushovd (Cervelo Test Team)
6h42’49" Alessandro Petacchi (LPR Brakes-Farnese Vini)

Because the get function hides some of the information in the source—i.e., nationalities and bib numbers—the
put function needs to reintegrate the hidden information from the source with the updated information in the view.
However, if it restores the hidden information to lines by position the string it produces as a result will be wrong:

..GBR 213 CTT 6h42’45" HAUSSLER Heinrich

..GER 74 QST 6h42’49" DAVIS Allan
NOR 75 CTT 6h42’49" HUSHOVD Thor

..AUS 182 LPR 6h42’49" PETACCHI Alessandro

Here, almost every line contains incorrect information (shaded in grey above): the line for Haussler has Cavendish’s
nationality and bib number, Davis’s line has Haussler’s information, and so on. The only line with the right

5

information is Hushovd’s, but this is purely an accident—the update happened to preserve his overall third position
in the list of riders, so the positional strategy restored his nationality and bib number from the right bit of the source.

Clearly, what we want is for the lens to match up lines in the source and view using some criteria other than
position. For example, we could match up lines in the source and view that have similar names (but note that we
cannot match them up by name, because we corrected the spelling of Davis’s first name in the view). Using this
strategy, on the same inputs as above, the put function would restore the nationality and bib number from each
source line to the appropriate rider in the view:

GER 74 CTT 6h42’45" HAUSSLER Heinrich
AUS 182 QST 6h42’49" DAVIS Allan
NOR 75 CTT 6h42’49" HUSHOVD Thor
ITA 177 LPR 6h42’49" PETACCHI Alessandro

Here is a revised version of the riders lens written using the extensions proposed in this paper that behaves better:

let l1 : lens = nat1 . bib1 . (team1 ~ time1) . name1
let l2 : lens = bib2 . time2 . (team2 ~ ..key name2)
let riders : lens =

(lines ..<set:l1> ; lines ..<set:l2>)

Compared to the initial version of the lens, we have made two changes (shaded in grey). First, we have indicated
that each line of text processed by l1 and l2 should be treated as a reorderable “chunk” by enclosing those
lenses in angle brackets. And second, we have specified that chunks should be aligned by matching up lines
with corresponding names. The key combinator indicates that the name of each rider should be considered when
computing an alignment while set indicates the overall alignment strategy to use: minimizing the sum of the edit
distances between pairs of matched chunks and the lengths of unmatched chunks.

The next few sections explain how these features work in detail. The point of this example is that we can tackle
instances of the view update problem involving ordered data by providing programmers with simple, compositional
primitives for specifying alignment strategies in a lens program.

3. Semantics of Matching Lenses
In this section, we begin our technical development by defining the semantic space of matching lenses. Matching
lenses are organized around a simple architecture in which a top-level lens handles the alignment of chunks and
the processing of information outside of chunks and a lower-level basic lens handles the processing of information
contained in chunks. For now, we will assume that chunks only appear at the top level and the same basic lens is
used to process every chunk. We will see how to generalize this simple architecture with multiple basic lenses and
nested chunks in Sections 5 and 6.

By themselves, matching lenses do not provide mechanisms for actually computing alignments between chunks
in the source and view. Instead, they provide an interface for manipulating chunks that can be used to supply a
lens with explicit information about how the chunks in the source should be aligned against the chunks in the view.
Thus, matching lenses are a flexible framework that can be instantiated with many different alignment strategies.
We describe some specific functions for computing alignments in Section 5.

3.1 Notation
Before we can define matching lenses precisely, we need to fix a few pieces of notation. We assume that the sets of
sources and views come equipped with notions of what constitutes a reorderable chunk of information. When u is a
structure containing chunks we write

• |u| for the number of chunks in u,
• locs(u) for the set of locations of chunks in u, where a location is a natural number and we number the chunks

of u from 1 to |u| in some canonical way,

6

• u[n] for the chunk located at n in u, where n ∈ locs(u),
• u[n:=v] for the structure obtained from u by setting the chunk at n to v, where n in locs(u) and v is a structure,
• and skel(u) for the residual structure consisting of the parts of u that are not contained in any chunk.

To ensure that chunks can be freely reordered, we require the sets of sources and views be closed under the operation
of replacing chunks by other chunks. Formally, when U is a set of structures with chunks (e.g., the set of sources or
views) and U ′ is a set of ordinary structures, we say that U is chunk compatible with U ′ if and only if

• the chunks of every structure in U belong to U ′—i.e., for every u ∈ U we have u[n] ∈ U ′,
• and membership in U is preserved when we replace arbitrary chunks with elements of U ′—i.e., for every u ∈ U

and n ∈ locs(u) and u′ ∈ U ′ we have that u[n:=u′] ∈ U ′.

In a matching lenses, we separate the handling of rigidly ordered and reorderable source information. To represent
the reorderable chunks of the source we use finite maps from locations to complements extracted from the source
chunks. This representation makes it easy to align the information contained in source chunks with the chunks in
the view—we can reorder complements so that they match up with chunks in the view and discard complements
that do not match any chunk. When r is a finite map we write

• {||} for the totally undefined finite map,
• {|n 7→ c|} for the singleton finite map that associates the location n to the complement c and is otherwise

undefined,
• r(n) for the complement that r associates to n,
• dom(r) for the domain of r,
• |r| for the largest element of dom(r),
• (r1 ++ r2) for the finite map that behaves like the finite map r1 on locations in dom(r1) and like the finite map

r2 shifted up by |r1| on other locations,

(r1 ++ r2)(n) ,
{

r1(n) if n ≤ |r1|
r2(n − |r1|) otherwise,

• and {|N 7→ C|} for the set of all finite maps from locations to complements in a set C.

To illustrate how these finite maps are used in a matching lens, consider a simple abstract example. Suppose that we
start with a source s that the get function maps to a view v and the res function maps to a rigid complement c and a
finite map r, called a resource (recall that matching lenses split the representation of rigidly ordered and reorderable
source information). Also suppose that the chunks in s, v and r are in exact correspondence—i.e., the lens does
not reorder chunks, so for every location n, the source chunk s[n] at n maps to v[n] in the view and r(n) in the
resource. Now suppose that we change the view to v′ and compute—in some way—a correspondence g between v′

and v, represented formally as a partial injective function on the locations of chunks in v′. Composing g and r as
functions yields a new resource in which the complement for each chunk in s is lined up with the specified chunk in
v′. Thus, to propagate the modification make to the view we simply need to put back v′ with the rigid complement c
and the pre-aligned resource (r ◦ g) using a lens that accesses source information for chunks through the resource.
Developing a framework that captures the constraints on the handling of chunks and resources needed to ensure that
this protocol for using lenses behaves as expected is the goal of this section.

3.2 Matching Lenses
We are now ready to define the semantic space of matching lenses precisely.

3.1 Definition [Matching Lens]: Let S and V be sets of structures with chunks, C a set of rigid complements, and
k a basic lens with S chunk compatible with k.S (i.e., the source type of k) and V chunk compatible with k.V (i.e.,

7

the view type of k). A matching lens l on S, C, k, and V comprises four functions

l.get ∈ S → V
l.res ∈ S → C × {|N 7→ k.C|}
l.put ∈ V → C × {|N 7→ k.C|} → S

l.create ∈ V → {|N 7→ k.C|} → S

obeying the following laws for every source s ∈ S, views v ∈ V and v′ ∈ V , rigid complement c ∈ C, and resource
r ∈ {|N 7→ k.C|} (i.e., finite map from locations to appropriately-typed complements for k):

l.get (l.put v (c, r)) = v (PUTGET)

l.get (l.create v r) = v (CREATEGET)

l.put (l.get s) (l.res s) = s (GETPUT)

locs(s) = locs(l.get s) (GETCHUNKS)

c, r = l.res s

locs(s) = dom(r)
(RESCHUNKS)

n ∈ (locs(v) ∩ dom(r))
(l.put v (c, r))[n] = k.put v[n] (r(n))

(CHUNKPUT)

n ∈ (locs(v) ∩ dom(r))
(l.create v r)[n] = k.put v[n] (r(n))

(CHUNKCREATE)

n ∈ (locs(v) \ dom(r))
(l.put v (c, r))[n] = k.create v[n]

(NOCHUNKPUT)

n ∈ (locs(v) \ dom(r))
(l.create v r)[n] = k.create v[n]

(NOCHUNKCREATE)

skel(v) = skel(v′)
skel(l.put v (c, r)) = skel(l.put v′ (c, r′))

(SKELPUT)

skel(v) = skel(v′)
skel(l.create v r) = skel(l.create v′ r′)

(SKELCREATE)

We write S
C,k⇐⇒ V for the set of all matching lenses on S, C, k and V .

Note that we build k, the basic lens that processes chunks, into the semantics of matching lenses because the
CHUNKPUT, NOCHUNKPUT, CHUNKCREATE, and NOCHUNKCREATE laws all mention it. For technical reasons,
it is important that the same basic lens be used for each chunk—among other things, it ensures that a matching lens
translates reorderings on the view to reorderings on the source.

The get function has the same type as in basic lenses. The put function, however, has a different type: it takes
a rigid complement and a resource rather than a complement. The res extracts these structures from a source. The
create function also has a different type—along with the view, it takes a resource as an argument. This makes it
possible for matching lenses to restore source information to chunks that have been newly created. To create a
source from a view “from scratch”, we invoke create with the empty resource.

The PUTGET, CREATEGET, and GETPUT laws express the same fundamental constraints as the basic lens laws.
The GETCHUNKS and RESCHUNKS law capture straightforward constraints on the handling of chunks. They

force matching lenses to maintain a one-to-one correspondence between the chunks in the source and view and the
complements in the resource. Specifically, the GETCHUNKS law stipulates that each chunk in the source must be
carried through to a chunk in the view. This rules out lenses that advertise the presence of chunks in the source but
not in the view and vice versa. The RESCHUNKS law requires an analogous property for the resource generated
by the res function from the source. Lenses that violate these these laws would cause problems with the protocol

8

for using alignments information with a matching lens described previously—rearranging the resource using an
alignment computed for the view would not make sense if the underlying source had different chunks than the view.
We do not state PUTCHUNKS and CREATECHUNKS laws because they can be derived from the other laws:

A.1 Lemma [PutChunks]: For every matching lens l ∈ S
C,k⇐⇒ V , view v ∈ V , skeleton c ∈ C, and resource

r ∈ {|N 7→ k.C|} we have locs(l.put v (c, r)) = locs(v).

A.2 Lemma [CreateChunks]: For every matching lens l ∈ S
C,k⇐⇒ V , view v ∈ V , and resource r ∈ {|N 7→ k.C|}

we have locs(l.create v r) = locs(v).

The next four laws are the essential matching lens laws—they ensure that the put and create functions use their
resource arguments and the basic lens k correctly. The PUTCHUNKS law stipulates that the nth chunk in the source
produced by put must be identical to the structure produced by applying k.put to the nth chunk in the view and
the complement associated to n in the resource. The CHUNKCREATE law is similar. The NOCHUNKPUT and
NOCHUNKCREATE laws stipulate that the matching lens must use k.create to produce the nth source instead of
k.put when the resource does not contain a complement for n.

The last two laws, SKELPUT and SKELCREATE, state that the skeleton of the sources produced by put and create
must not depend on any of the chunks in the view or complements in the resource. This law is critical for ensuring
that matching lenses translate reorderings on the view to reorderings on source chunks.

Compared to the basic lens laws, these laws have a low-level and operational feel—they spell out the precise
handling of chunks and resources in detail. However, we can use them to derive higher-level, more declarative
properties. For instance, we can use them to show that the put and create components of every matching lens
translate reorderings on the chunks in the view to corresponding reorderings on the chunks in the source. We will
write Perms(u) for the set of all permutations of the chunks in u and (q	 u) for the structure obtained by reordering
the chunks of u according to a permutation q. The next two lemmas follow directly from the matching lens laws:

A.3 Lemma [ReorderPut]: For every matching lens l ∈ S
C,k⇐⇒ V , view v ∈ V , rigid complement c ∈ C, resource

r ∈ {|N 7→ k.C|}, and permutation q ∈ Perms(v), we have q	 (l.put v (c, r)) = l.put (q	 v) (c, r ◦ q−1).

A.4 Lemma [ReorderCreate]: For every matching lens l ∈ S
C,k⇐⇒ V , view v ∈ V , rigid complement c ∈ C,

resource r ∈ {|N 7→ k.C|}, and permutation q ∈ Perms(v) we have: q	 (l.create v r) = l.create (q	 v) (r ◦ q−1).

To illustrate the semantics of matching lenses, consider the coercion ⌊·⌋ (pronounced “lower”), which takes a
matching lens l in S

C,k⇐⇒ V and packages it up with the interface of a basic lens in S
S⇐⇒ V . This coercion

realizes the procedure for using a matching lens described above, where we compute a correspondence between the
chunks in the new and old views and use it to pre-align the resource before invoking the put function (it computes
the alignment using a new function align , which is described below):

.

.

.
l ∈ S

C,k⇐⇒ V

⌊l⌋ ∈ S
S⇐⇒ V

.

get s = l.get s
res s = s
put v s = l.put v (c, r ◦ g)

where (c, r) = l.res s
and g = align(v, l.get s)

create v = l.create v {||}

The typing rule in the top box can be read as a lemma asserting that if l is a matching lens at S
C,k⇐⇒ V then ⌊l⌋ is a

basic lens at S
S⇐⇒ V . We state and prove this lemma explicitly as Lemma A.5 in the appendix.

9

The bottom box defines the components of ⌊l⌋. The get function is identical to l.get and the res function simply
uses the whole source as the complement. The put function takes a view v and a complement s as arguments. It first
uses l.res to calculate a rigid complement c and resource r from s and then calculates a correspondence g between
the locations of chunks in v and chunks in (l.get s) using align . For now, we simply assume that align is a fixed
function that takes two views and computes a correspondence between their chunks—formally, a partial injective
function on their locations. (We will describe mechanisms for specifying align in Section 5). Next, it composes r
and g as functions, which has the effect of pre-aligning the complements in r with the chunks in v as specified by
g. To finish the job, the put function passes v, c and (r ◦ g) to l.put, which produces the new source. The basic
create function invokes l.create with the view and the empty resource. Note that ⌊·⌋ does not assume anything about
the align function except that it returns the identity alignment when its arguments are identical views. We use this
property in the proof that ⌊l⌋ obeys the GETPUT law.

4. Matching Lenses for String Data
Having defined the semantic space of matching lenses and developed a few of their main properties, we now turn
our attention to syntax and develop a collection of combinators for describing matching lenses that operate on string
data. We work with strings both because they expose all the complications related to alignment and because they
are ubiquitous (so having a language for defining lenses on strings is useful). The primitives defined in this section
are based on the basic and dictionary lens combinators we have studied in previous work [3, 12].

4.1 Notation
First, let us fix some notation for strings with chunks. Let Σ be a finite alphabet (e.g., ASCII). A language L is
a subset of Σ∗. When L is non-empty, we write choose(L) for an arbitrary representative of L. The symbol ϵ
denotes the empty string and (u·v) denotes the concatenation of strings u and v. We lift concatenation to languages
in the obvious way: L1·L2 , {u·v | u ∈ L1 and v ∈ L2}. The iteration of a language L is L∗ ,

∪∞
n=0 Ln,

where Ln denotes the n-fold concatenation of L with itself. Many of our definitions require that every string in
the concatenation of two languages have a unique factorization into smaller strings belonging to the languages
being concatenated. Two languages L1 and L2 are unambiguously concatenable, written L1·!L2, if for all strings
u1 and v1 in L1 and u2 and v2 in L2, if (u1·u2) = (v1·v2) then u1 = v1 and u2 = v2. Similarly, a language L is
unambiguously iterable, written L!∗, if for all strings u1 to um and v1 to vn in L, if (u1 · · ·um) = (v1 · · · vn) then
m = n and ui = vi for i from 1 to n.

We will define the types of our matching lens primitives using regular expressions decorated with annotations
indicating the locations of chunks. The set of regular expressions is generated by the following grammar

R ::= ∅ | u | R·R | R|R | R∗

where u ranges over arbitrary strings (including ϵ). The denotation [[E]] of a regular expression E is a regular
language. Regular languages are closed under the boolean operators and have many decidable properties including
emptiness, inclusion, and equivalence. It is also decidable whether two regular languages are unambiguously
concatenable and whether a single regular language is unambiguously iterable (see [2, Prop. 4.1.3]).

Now we will show how to add annotations to regular expressions to specify the locations of chunks. Let ‘⟨’ and
‘⟩’ be fresh symbols that do not occur in Σ. The set of chunk-annotated regular expressions is generated by the
following grammar

A ::= R | ⟨R⟩ | A |A | A·A | A∗

where R ranges over ordinary regular expressions. Observe that every ordinary regular expression is also a
chunk-annotated regular expression and that chunks only appear at the top level. The denotation [[A]] of a chunk-
annotated regular expression A is a language of chunk-annotated strings—i.e., strings over the extended alphabet
(Σ∪{‘⟨’, ‘⟩’})∗ where occurrences of ‘⟨’ and ‘⟩’ are balanced and non-nested. We write ⌊·⌋ for the erasure function
that maps chunk-annotated strings to ordinary strings (by removing ’⟨’ and ’⟩’ characters and mapping every other
character to itself) and we lift ⌊·⌋ to regular expressions and languages in the obvious way.

10

We will use languages of chunk-annotated strings to “read off” the locations of chunks in ordinary strings. Given
a language of chunk-annotated strings L and an ordinary string u in the erasure of L, we calculate the number
|u| of chunks in u, the chunk u[n] at n in u, and so on, by first “parsing” u into a chunk-annotated string using
L, and then using the explicit chunks in the result to give meaning to each of the concepts involving chunks.
For example, if L is the language of chunk-annotated strings described by the chunk-annotated regular expression
⟨(‘A’ | . . . | ‘Z’)·(‘1’ | . . . | ‘9’)⟩∗ and u is “A1B2C3”, then u parses into “⟨A1⟩⟨B1⟩⟨C1⟩”, so the number |u| of
chunks in u is 3, the second chunk u[2] in u is “B2”, and the string u[2:=“Z9”] obtained by setting the second chunk
in u to “Z9” is “A1Z9C3”.

Obviously for this way of identifying chunks in ordinary strings to make sense, we need to be sure that every
string has a unique parse into a chunk-annotated string using L. Not every language has this property—e.g., (a·b)
has two different parses using the language {“⟨a⟩b”, “a⟨b⟩”}. To rule out such chunk ambiguous languages, we
will be careful to ensure that every language of chunk-annotated strings under discussion uniquely determines the
chunks of strings in its erasure—i.e., whenever we introduce a chunk-annotated regular language L as the source or
view type of a matching lens, we will make sure that ⌊·⌋ is bijective on L.

4.2 Primitives
With this notation in place, we are now ready to define matching lens primitives for strings.

Lift The first primitive lifts a basic string lens to a matching lens. This makes it possible to use basic lenses such
as copy and (<->) in matching lens programs. As the source and view types of a basic lens are sets of ordinary
strings, the lifted lens does not have chunks in its type so it satisfies the new matching lens laws vacuously.

.

.

.
k′ ∈ S′ C′

⇐⇒ V ′ k ∈ S
C⇐⇒ V

k̂ ∈ S
C,k′⇐⇒ V

.

get s = k.get s
res s = k.res s, {||}
put v (c, r)= k.put v c
create v r = k.create v

Note that the basic lens k′ mentioned in the type of k̂ can be an arbitrary lens because the source and view types do
not have chunks.

Match Another way to convert a basic lens to a matching lens is to place it within a chunk.

.

.

.
k ∈ S

C⇐⇒ V

⟨k⟩ ∈ ⟨S⟩ {�},k⇐==⇒ ⟨V ⟩

.

get s = k.get s
res s =�, {|1 7→ k.res s|}

put v (�, r) =
{

k.put v (r(1)) if 1 ∈ dom(r)
k.create v otherwise

create v r =
{

k.put v (r(1)) if 1 ∈ dom(r)
k.create v otherwise

The ⟨k⟩ (pronounced “match k”) is the essential matching lens. It uses the basic lens k to process strings in both
directions, treating the entire source as a reorderable chunk. The get component of ⟨k⟩ simply passes off control to
the basic lens k. The res function takes a source s and produces � as the rigid complement and {1 7→ k.res s} as

11

the resource. The put function accesses the complement through its resource argument: it invokes k.put on the view
and r(1) if r is defined on 1 and k.create on the view otherwise. The create function is identical to put.

Concatenation The next three primitives build bigger lenses out of smaller ones using the regular operators.
Together, these operators represent a core language that can be used to express many useful transformations on
strings. The concatenation operator is the simplest:

.

.

.

⌊S1⌋·!⌊S2⌋ ⌊V1⌋·!⌊V2⌋
l1 ∈ S1

C1,k⇐⇒ V1 l2 ∈ S2
C2,k⇐⇒ V2

(l1·l2) ∈ (S1·S2)
(C1×C2),k⇐===⇒ (V1·V2)

.

get (s1·s2) = (l1.get s1)·(l2.get s2)
res (s1·s2) = (c1, c2), (r1 ++ r2)

where c1, r1 = l1.res s1

and c2, r2 = l2.res s2

put (v1·v2) (c, r)= (l1.put v1 (c1, r1))·(l2.put v2 (c2, r2))
where c1, c2 = c

and r1, r2 = split(|v1|, r)
create (v1·v2) r =(l1.create v1 r1)·(l2.create v2 r2)

where r1, r2 = split(|v1|, r)

The get function splits the source string into two smaller strings s1 and s2, applies the get functions of l1 and l2
to these strings, and concatenates the resulting strings. We write (s1·s2) in the box above to indicate that s1 and
s2 are strings in S1 and S2 that concatenate to (s1·s2). Because the typing rule requires that the languages ⌊S1⌋
and ⌊S2⌋ of ordinary strings be unambiguously concatenable, s1 and s2 are unique. This also ensures that (S1·S2)
unambiguously determines chunks in the source.

The res function splits the source into smaller strings s1 and s2 and applies the res functions of l1 and l2 to these
strings. This yields rigid complements c1 and c2 and resources r1 and r2. It merges the complements into a pair
(c1, c2) and combines the resources into a single finite map (r1 ++ r2). Because the same basic lens k is mentioned
in the types of both l1 and l2, the resources r1, r2, and (r1 ++ r2) are all finite maps belonging to {|N 7→ k.C|}. This
ensures that we can freely reorder the resource and pass arbitrary portions of it to l1 and l2.

The put function splits each of the view, rigid complement, and resource in two, applies the put functions of l1 and
l2 to the corresponding pieces of each, and concatenates the results. The create function is similar. Both functions
split the resource using split(n, r) and |v1| (the number of chunks of the first substring of the view). This yields two
resources: one that behaves like r restricted to locations less than or equal to |v1| and another resource that behaves
like like r shifted down by |v1|. Splitting the resource in this way ensures that every complement that is aligned with
a chunk in the view remains aligned with the same chunk in the corresponding portion of the resource and substring
of the view. Formally, split is defined as follows:

(π1(split(n, r)))(m) =
{

r(m) if m < n and m ∈ dom(r)
undefined otherwise

(π2(split(n, r)))(m) =
{

r(m + n) if (m + n) ∈ dom(r)
undefined otherwise.

Note that split(|r1|, r1 ++ r2) = (r1, r2). This property is essential for ensuring the GETPUT law.
As discussed above, the typing rule requires that l1 and l2 be defined over the same basic lens k, which ensures

that the resource (r1 ++ r2) has a uniform type. We might be tempted to relax the condition and allow l1 and l2 to
be defined over two different basic lenses, as long as those lenses had compatible complement types. Unfortunately,

12

this would lead to lenses with weaker properties. For example, consider the lens (⟨k1⟩·⟨k2⟩) where k1 and k2 are
basic lenses defined as follows:

k1 , (a ↔ a | b ↔ b) ∈ {a, b} {a,b}⇐==⇒ {a, b}
k2 , (a ↔ b | b ↔ a) ∈ {a, b} {a,b}⇐==⇒ {a, b}

Invoking the put function of this lens on “aa” yields “ab” as a result (since k1 and k2 are “bijective” lenses, the rigid
complement and resource arguments do not affect the evaluation of put). Now suppose that we swap the chunks of
“aa”. According to Lemma A.3, the put function should produce “ba”—i.e., the string obtained by swapping the
chunks of “ab”. But this is not what happens. Swapping the chunks of “aa” is a no-op, so put produces the same
result as before. Thus, although it is tempting to allow matching lenses that use different lenses to process chunks,
we don’t do this, because it would require sacrificing natural properties such as Lemma A.3.

Kleene Star The Kleene star operator iterates a lens:

.

.

.
l ∈ S

C,k⇐⇒ V ⌊S⌋!∗ ⌊V ⌋!∗

l∗ ∈ S∗ (C list),k⇐==⇒ V ∗

.

get (s1 · · · sn) = (l.get s1) · · · (l.get sn)

res (s1 · · · sn) = [c1, . . . , cn], (r1 ++ . . . ++ rn)
where ci, ri = l.res si for i ∈ {1, . . . , n}

put (v1 · · · vn) (c, r)= s′1 · · · s′n
where s′i =

{
l.put vi (ci, ri) i ∈ {1, . . . ,min(n,m)}
l.create vi ri i ∈ {m + 1, . . . , n}

and [c1, · · · , cm] = c
and r′0 = r
and ri, r

′
i = split(|vi|, r′(i−1)) for i ∈ {1, . . . , n}

create (v1 · · · vn) r =(l.create v1 r1) · · · (l.create vn rn)
where r′0 = r

and ri, r
′
i = split(|vi|, r′(i−1)) for i ∈ {1, . . . , n}

The get and res components of the Kleene star lens are straightforward generalizations of the corresponding
components of the concatenation lens. The put function, however is different. Because it must be a total function,
it needs to handle situations where the number of substrings of the view is different than the number of items in
the list of rigid complements. When there are more rigid complements than substrings of the view, the lens simply
discards the extra complements. When there are more substrings than rigid complements, it processes the extra
substrings using l.create. This is the reason that create takes a resource as an argument—the resource may contain
complements for chunks in the extra substrings.

To illustrate the last few definitions, let us consider a simple example:

let k : lens = key [A-Z] . del [a-z]
let l : lens = <k> . (copy "," . <k>)*

The lens k copies an upper-case letter from source to view and deletes a lower-case letter while l uses the match,
concatenation, and Kleene-star lenses to iterate k over a non-empty list of comma-separated chunks (the Boomerang
implementation automatically inserts coercions to lift basic lenses to matching lenses using (·̂) and to convert
the top-level matching lens to a basic lens using ⌊·⌋ when we invoke its get or put component with string
arguments). The behavior of l.get is straightforward—e.g., it maps “Xx,Yy,Zz” to “X,Y,Z”. However, l.put is

13

more sophisticated—it restores the lower-case letters from source chunks by matching up upper-case letters in the
old and new views. For instance, if we insert “W” into the middle of the view, put behaves as follows:

l.put "Z,Y,W,X" into "Xx,Yy,Zz" = "Zz,Yy,Wa,Xx"

Let us trace the evaluation of this example in detail. First, the ⌊l⌋.put lens uses l.res to calculate a rigid complement
c and resource r from the source string:

c = (�, [(“,”, �), (“,”, �)]) r =

∣∣∣∣∣∣

1 7→ “Xx”
2 7→ “Yy”
3 7→ “Zz”

∣∣∣∣∣∣

Next, it calculates a correspondence g between the chunks in the old view and the new view and composes this
correspondence with r to obtain the pre-aligned resource (for the moment we are ignoring how the lens computes
g—see Section 5):

g = .
.X
.Y
.Z

.Z

.Y

.W

.X
=

∣∣∣∣∣∣
4 7→ 1
2 7→ 2
1 7→ 3

∣∣∣∣∣∣
 (r ◦ g) =

∣∣∣∣∣∣
4 7→ “Xx”
2 7→ “Yy”
1 7→ “Zz”

∣∣∣∣∣∣

Finally, it invokes l.put on the new view, c, and (r ◦ g). The effect is that the lower-case letters are restored to
the chunk containing the corresponding upper-case letter. Note that the third chunk, W is created fresh because the
pre-aligned resource (r ◦ g) is undefined on 3.

Union The final regular operator forms the union of two matching lenses:

.

.

.

⌊S1⌋ ∩ ⌊S2⌋ = ∅ ⌊V1⌋ ∩ ⌊V2⌋ ⊆ ⌊V1 ∩ V2⌋
l1 ∈ S1

C1,k⇐⇒ V1 l2 ∈ S2
C2,k⇐⇒ V2

(l1 | l2) ∈ (S1 ∪ S2)
(C1+C2),k⇐===⇒ (V1 ∪ V2)

.

get s =
{

l1.get s if s ∈ ⌊S1⌋
l2.get s if s ∈ ⌊S2⌋

res s =
{

Inl(l1.res s) if s ∈ ⌊S1⌋
Inr(l2.res s) if s ∈ ⌊S2⌋

put v (c, r)=

l1.put v (c1, r) if v ∈ ⌊V1⌋ ∧ c = Inl(c1)
l2.put v (c2, r) if v ∈ ⌊V2⌋ ∧ c = Inr(c2)
l1.create v r if v ̸∈ ⌊V2⌋ ∧ c = Inl(c2)
l2.create v r if v ̸∈ ⌊V1⌋ ∧ c = Inr(c1)

create v r =
{

l1.create v r if v ∈ ⌊V1⌋
l2.create v r if v ̸∈ ⌊V1⌋

The union lens is a bidirectional conditional operator. The get function selects l1.get or l2.get by testing whether
the source string belongs to ⌊S1⌋ or ⌊S2⌋. The typing rule requires that these types be disjoint, so this choice is
deterministic.

The res function also selects l1.res or l2.res by testing the source string. It places the resulting rigid complement
in a tagged sum, producing Inl(c) if the source belongs to ⌊S1⌋ and Inr(c) if it belongs to ⌊S2⌋. It does not tag
the resource—because l1 and l2 are defined over the same basic lens k for chunks, we can safely pass a resource
computed by l1.res to l2.put and vice versa.

The put function is slightly more complicated, because the typing rule allows the view types to overlap. It tries
to select one of l1.put or l2.put using the view and uses the rigid complement disambiguate cases where the view
belongs to both ⌊V1⌋ and ⌊V2⌋. The create function is similar. Note that because put is a total function, it needs to

14

handle cases where the view belongs to (⌊V1⌋\V2) but the complement is of the form Inl(c). To satisfy the PUTGET

law, it must invoke one of l1’s component functions, but it cannot invoke l1.put because the rigid complement c does
not necessarily belong to C1. It discards c and uses l1.create instead.

The side condition (⌊V1⌋ ∩ ⌊V2⌋) ⊆ ⌊V1 ∩ V2⌋ in the typing rule for union ensures that (V1 |V2) is chunk
unambiguous—i.e., that strings in the intersection (V1 ∩ V2) have unique parses. It rules out language of chunk-
annotated strings such as (a·⟨b⟩ | ⟨a⟩·b).

Composition The composition operator puts two matching lenses in sequence:

.

.

.
l1 ∈ S

C1,k1⇐==⇒ U l2 ∈ U
C2,k2⇐==⇒ V

(l1;l2) ∈ S
(C1⊗C2),(k1;k2)⇐=====⇒ V

.

get s = l2.get (l1.get s)
res s = ⟨c1, c2⟩, zip r1 r2

where c1, r1 = l1.res s
and c2, r2 = l2.res (l1.get s)

put v (⟨c1, c2⟩, r)= l1.put (l2.put v (c2, r2)) (c1, r1)
where r1, r2 = unzip r

create v r = l1.create (l2.create v r2) r1

where r1, r2 = unzip r

Composition is especially interesting as a matching lens because it propagates alignment information through two
phases of computation. The get function applies l1.get and l2.get in sequence. The res function applies l1.res to the
source s, yielding a rigid complement c1 and resource r1, and l2.res to (l1.get s), yielding c2 and r2. It merges the
rigid complements into a pair ⟨c1, c2⟩ and combines the resources by zipping them together, where the zip function
is defined as follows:3

(zip r1 r2)(m) =
{
⟨r1(m), r2(m)⟩ if m ∈ dom(r1) ∩ dom(r2)
undefined otherwise

Note that we have the following equalities

dom(r1) = locs(s) by RESCHUNKS for l1
= locs(l.get s) by GETCHUNKS for l1
= dom(r2) by RESCHUNKS for l2

so (zip r1 r2) is defined on the same locations as dom(r1) and dom(r2).
The put function unzips the resource and applies l2.put and l1.put in that order. The unzip function on finite maps

is defined as follows

(πi(unzip r))(m) =

{
ci if r(m) = ⟨c1, c2⟩
undefined otherwise

where i ∈ {1, 2}. Because the zipped resource represents the resources generated by l1 and l2 together, rearranging
the resource has the effect of pre-aligning the resources for both phases of computation.

To illustrate the behavior of the composition lens, consider the following example:

let k1 : lens = del [0-9] . copy [A-Z] . copy [a-z]
let k2 : lens = del [A-Z] . key (copy [a-z])
let l : lens =

3 The angle brackets distinguish these pairs from the rigid complements generated for the concatenation lens.

15

<k1> . (copy "," . <k1>)* ;
<k2> . (copy "," . <k2>)*

The get function takes a non-empty list of comma-separated chunks containing a number, an upper-case letter, and
a lower-case letter, and deletes the number in the first phase and the upper-case letter in the second phase:

l.get "1Aa,2Bb,3Cc" = "a,b,c"

The resource produced by res represents the upper-case letter and number together, so the put function restores both
to the appropriate chunk:

l.put "b,a" into "1Aa,2Bb,3Cc" = "2Bb,1Aa"

The typing rule for the composition lens requires that the view type of l1 be identical to the source type of l2. In
particular, it requires that the chunks in these types must be identical. Intuitively, this makes sense—the only way
that the put function can reasonably translate alignments on the view back through both phases of computation to
the source is if the chunks in the types of each lens agree. However, in some situations, it is useful to compose lenses
that have identical erased types but different notions of chunks—e.g., one lens does not have any chunks, while the
other lens does have chunks. To do this “asymmetric” form of composition, we can convert both lenses to basic
lenses using ⌊·⌋, which forgets the chunks in the source and view and compose them as basic lenses.

5. Alignments
So far, our discussion has focused exclusively on the mechanisms of matching lenses, which extend basic lenses
with a notion of chunks and provide an interface for supplying a lens with explicit directives about how source
chunks should be aligned against the view. But we have not said where these directives come from.

In this section, we describe the strategies for computing alignments that we have implemented in the Boomerang
language [10]. We describe three different alignment “species” and we present mechanisms for tuning alignment
strategies using notions of “keys” and “thresholds”. Because alignment is a fundamentally heuristic operation, the
choice of a proper alignment function depends intimately on the details of the application at hand. One of the main
strengths of the framework of matching lenses is its flexibility. Matching lenses can be instantiated with arbitrary
alignment functions since the well-behavedness of lenses does not hinge on any special properties of the function
used to align chunks: the only property we require is that it return the identity alignment when its arguments are
identical. Thus, the mechanisms described in this section should not be taken as exhaustive; it would be easy to
extend them with additional mechanisms if needed.

Species Boomerang currently supports three different alignment “species”, depicted graphically in Figure 1 (a-c):

• Positional: The alignment matches up chunks by position. If one of the lists has more chunks than the other, the
extra chunks at the end of the longer list do not match any chunk in the shorter list.

• Set-like: The alignment minimizes the sum of the total edit distances between pairs of matched chunks and the
lengths of unmatched chunks.

• Diff-like: The alignment minimizes the same function as the set-like strategy, but only considers alignments
without “crossing” edges. This heuristic can be computed efficiently using a variant of the standard algorithm for
computing the longest common subsequence of two lists.

These species are illustrated in the following simple examples:

let l = key [A-Z] . del [0-9]
<pos:l>*.put "BCA" into "A1B2C3" = "B1C2A3"
<set:l>*.put "BCA" into "A1B2C3" = "B2C3A1"
<dif:l>*.put "BCA" into "A1B2C3" = "B2C3A0"

These examples also illustrate how Boomerang programmers indicate a species to use with chunks. The match
combinator implemented in Boomerang actually takes two arguments: an annotation that specifies the alignment

16

species and a basic lens for chunks. (The shorthand <l> we have been using in examples desugars to <set:l>).
When we coerce a matching lens to a basic lens using ⌊·⌋, it instantiates the align function using the species
indicated in the annotation (recall that this coercion is automatically implemented by the Boomerang type checker
when we invoke the get or put component of a matching lens). Boomerang’s typechecker checks that the same
annotation is used on every instance of the match combinator—e.g., it disallows (<pos:l > . <dif:l>), which
specifies two different species for chunks.

Keys Typically, we do not want to consider the entire contents of chunks when we compute alignments.
Boomerang includes two primitives, key and nokey, that allow programmers to control the portions of each chunk
that are used to compute alignments. Both of these combinators take a matching lens as an argument, but they do
not change the get/put behavior of the lens they enclose. Instead, they add extra annotations to the view type that we
use to “read off” a key for each chunks (just like we use annotations to “read off” the locations of chunks). When
the align function computes an alignment for two lists of chunks, it uses the view type to extract the regions of each
chunk that are marked as keys and ignores the rest of each chunk.

To illustrate the use of keys, consider a simple example:

let k = del [0-9] . copy [A-Z] . copy [a-z]
let l = <set:k> . (copy "," . <set:k>)*
l.put "Cc,Bb,Aa" into "1Aa,2Bb,3Cc" = "1Cc,2Bb,3Aa"

Although this program aligns chunks using the set-like species, it behaves positionally because the view type does
not contain any key annotations—i.e., the key of every chunk is the empty string. The following revised version of
has a key annotation

let k = del [0-9] . key (copy [A-Z]) . copy [a-z]
let l = <k> . (copy "," . <k>)*

so its put function matches up chunks using the upper-case letters in the view:

l.put "Cc,Bb,Aa" into "1Aa,2Bb,3Cc" = "3Cc,2Bb,1Aa"

Note that lower-case letters, which are not marked as a part of the key, do not affect alignment:

l.put "Ca,Bb,Ac" into "1Aa,2Bb,3Cc" = "3Ca,2Bb,1Ac"

The nokey primitive is dual to key—it removes the key annotation on the view type of the lens it encloses. We can
use nokey to write an equivalent version of the previous lens:

let k = key (del [0-9] . copy [A-Z] . nokey (copy [a-z]))
let l = <k> . (copy "," . <k>)*

The simple mechanisms for indicating keys provided by the key and nokey primitives suffice for many practical
examples, but there are many ways that it could be extended. For example, we could provide programmers with
mechanisms for generating unique keys or for building keys structured as tuples or records (rather than simply
flattening the regions of each chunk marked as a key into a string). We plan to explore these ideas in future work.

Thresholds The set-like and diff-like species compute alignments by minimizing the sum of the total edit
distances between matched chunks and the lengths of unmatched chunks. In some applications, it is important to not
match up chunks that are “too different”, even if aligning those chunks would result in a minimal cost alignment.
For instance, in the following program, where keys are three characters long

let k : lens = key [A-Z]{3} . del [0-9]
let l : lens = (<set:k> . copy ";")*
l.put "DBD;CCC;AAA;" into "AAA1;BBB2;CCC3;" = "DBD2;CCC3;AAA1;"

17

we might like the DBD and BBB2 chunks to not be aligned with each other. However, the set-like species aligns them
because the cost of a two-character edit is less than the six-character edit of deleting BBB from the view and adding
DBD. To achieve the behavior we want, we can add a threshold, as shown in the following example:

let l : lens = (<sim 50:k> . copy ";")*
l.put "DBD;CCC;AAA;" into "AAA1;BBB2;CCC3;" = "DBD0;CCC3;AAA1;"

The sim species is similar to set, but takes an integer n as an argument. It minimizes the total edit distances
between aligned chunks, like set, but it only aligns chunks whose longest common subsequence is at least n% of
the lengths of their keys. (The set species actually desugars to (sim 0) and dictionary lenses can be simulated
using (sim 100).) The revised version of the l lens does not align DBD with BBB2 because the longest common
subsequence computed from their keys does not meet the threshold. The diff species also supports thresholds. We
often use diff with a threshold to align chunks containing of unstructured text.

6. Extensions
Our design for matching lenses is based on three assumptions:

1. the source and view only contain chunks at the top level,

2. the same lens is used to process every chunk, and

3. the lens does not reorder chunks.

However, it is often important to be able to use different lenses to process multiple kinds of chunks, to nest chunks
within other chunks, and to reorder chunks in going from source to view. This section describes how we can extend
the matching lens framework to accommodate each of these features.

6.1 Nested Chunks
Some sources contain reorderable information at several different levels of structure. For example, suppose that the
source is a Wiki with three levels of structure: sections, subsections, and paragraphs,

=Grand Tours=
The grand tours are major cycling races...
==Giro d’Italia==
The Giro is usually held in May and June...
==Tour de France==
The Tour is usually held in July...
=Classics=
The classics are one-day cycling races...
==Milan-San Remo==
Milan-San Remo is held in March...
==Paris-Roubaix==
Paris-Roubaix is held in mid-April...

and the view is a simplified list of section and subsection headings:

Grand Tours:
Giro d’Italia
Tour de France

Classics:
Milan-San Remo
Paris-Roubaix

If we update the view by reordering the sections and adding some new subsections to each

Classics:

18

Milan-San Remo
Ronde van Vlaanderen
Paris-Roubaix

Grand Tours:
Giro d’Italia
Tour de France
Vuelta a Espana

we would the paragraphs to be restored to the appropriate section or subsection:

=Classics=
The classics are one-day cycling races...
==Milan-San Remo==
Milan-San Remo is held in March...
==Ronde van Vlaanderen==
==Paris-Roubaix==
Paris-Roubaix is held in mid-April...
=Grand Tours=
The grand tours are major cycling races...
==Giro d’Italia==
The Giro is usually held in May and June...
==Tour de France==
The Tour is usually held in July...
==Vuelta a Espana==

To do this, we need a lens that aligns chunks at several levels of structure, not just at the top-level. Using the lower
combinator we can convert a matching lens for the nested chunks to a basic lens and use it to process the nested
chunks as in the following program:

let HEADING : regexp = ([^=\n]* - (" " . [^]*))
let TEXT : regexp = (([^=\n] . [^\n]*)? . "\n")*
let paragraphs : lens = del (TEXT . ("\n" . TEXT)*)
let subsection : lens =
ins " " . del "==" . key HEADING . del "==" .
copy "\n" .
paragraphs

let section : lens =
del "=" . key HEADING . del "=" . ins ":" .
copy "\n" .
paragraphs . lower < set : subsection >*

let wiki : lens =
< set : section >*

The paragraph lens deletes blocks of text separated by double newline characters. The subsection lens inserts
two space characters as indentation, copies the subsection heading, and deletes the paragraphs that follow. The
section lens copies the heading, inserts a colon character, deletes the paragraphs that follow, and then processes a
list of subsections. The top-level wiki lens processes a list of sections.

The main thing to notice about this program is that we can use lower to build matching lenses that process
chunks using other matching lenses even though the match combinator takes a basic lens as an argument. Lenses
constructed in this way align chunks in strict nested fashion—e.g., in this example, the top-level chunks for sections
are first aligned against other sections and the nested chunks for subsections within each section are aligned next.

19

6.2 Tags
In other applications, we need to use several different basic lenses to process chunks. For example, suppose that we
wanted to build a version of the wiki lens that aligns subsections and sections separately. Why would we want this?
Observe that the nested alignments computed by the wiki lens just described never align subsections in different
sections. Thus, if we update the view by moving the heading for the “Paris-Roubaix” subsection from the classics
section to the grand tours section

Classics:
Milan-San Remo

Grand Tours:
Paris-Roubaix
Giro d’Italia
Tour de France

the paragraph under the Paris-Roubaix subsection will be lost when we invoke the put function:

=Classics=
The classics are one-day cycling races...
==Milan-San Remo==
Milan-San Remo is held in March...
=Grand Tours=
The grand tours are major cycling races...
==Paris-Roubaix==
==Giro d’Italia==
The Giro is usually held in May and June...
==Tour de France==
The Tour is usually held in July...

The reason for this behavior is that the alignment follows the nesting structure of the document.
In this example, it would be better to align section and subsections separately instead of following the structure

of the document. To do this, we need to generalize matching lenses to allow multiple kinds of chunks in the same
program. Here is a revised version of the wiki lens written using “tags” that has the behavior we want:

let section : lens =
del "=" . key HEADING . del "=" . ins ":" .
copy "\n" .
paragraphs

let wiki : lens =
(< tag "section" set : section > .

< tag "subsection" set : subsection >*)*

Rather than having nested chunks, this lens has two chunks at the top level—one for sections and another for
subsections. The tag primitive gives distinct names to these chunks and indicates that the two kinds of chunks
should be handled separately by the lens. On the same inputs as above, the put function produces a new source

=Classics=
The classics are one-day cycling races...
==Milan-San Remo==
Milan-San Remo is held in March...
=Grand Tours=
The grand tours are major cycling races...
==Paris-Roubaix==

20

Paris-Roubaix is held in mid-April...
==Giro d’Italia==
The Giro is usually held in May and June...
==Tour de France==
The Tour is usually held in July...

where the paragraph under the Paris-Roubaix subsection is correctly restored from the source. Extending matching
lenses with tags is simple—we generalize each of our structures with an extra level of indirection for tags. For
example, we change the type of resources to finite maps from tags to locations to complements and we compute
alignments by tag.

6.3 Swap
All of the matching lenses we have seen so far map chunks in the source through to the same chunks in the
view and vice versa, but in some applications we need matching lenses that reorder chunks. The swap operator,
written (l1 ∼ l2), behaves like the concatenation lens, but swaps the order of strings in the view. Adding swap as a
matching lens complicates the story significantly because it makes it possible to construct lenses that reorder chunks.
Lenses that reorder chunks break the protocol for using matching lenses where we pre-align the resource using a
correspondence computed for the view. They also cause problems with the sequential composition operator—in
general, the two lenses will reorder the chunks in different ways, so it will not make sense to simply zip the resources
generated by each lens together together and align them against the view.

To recover the behavior we want in the presence of primitives that reorder chunks, we need to keep track of the
permutation on chunks that is computed by the lens. Therefore, we add a new component to every matching lens

l.perm ∈ Π s : ⌊S⌋. Perms(locs(s))

that computes the permutation on chunks realized by the get function.
It is straightforward to add perm to each of the lenses we have seen so far—e.g., the lift primitive returns the empty

permutation, match returns the identity permutation on its only chunk, and the concatenation operator merges the
permutations returned by its sublenses in the obvious way.

We also need to generalize the CHUNKPUT, CHUNKCREATE, NOCHUNKPUT, and NOCHUNKCREATE laws
using perm—the old versions do not hold for lenses that permute the order of chunks in going from source to view:

n ∈ (locs(v) ∩ dom(r))
(l.perm (l.put v (c, r)))(m) = n

(l.put v (c, r))[m] = k.put v[n] (r(n))
(CHUNKPUT)

n ∈ (locs(v) ∩ dom(r))
(l.perm (l.put v (c, r)))(m) = n

(l.create v r)[m] = k.put v[n] (r(n))
(CHUNKCREATE)

n ∈ (locs(v) \ dom(r))
(l.perm (l.put v (c, r)))(m) = n

(l.put v (c, r))[m] = k.create v[n]
(NOCHUNKPUT)

n ∈ (locs(v) \ dom(r))
(l.perm (l.put v (c, r)))(m) = n

(l.create v r)[m] = k.create v[n]
(NOCHUNKCREATE)

These laws generalize the laws given in Section 3. The CHUNKPUT law stipulates that the mth chunk in the source
produced by put must be identical to the structure produced by applying k.put to the nth chunk in the view and the
element r(n) in the resource, where the permutation computed by the perm function on the source maps m to n.
The other laws are similar generalizations of the previous versions.

21

Composition Using perm, we can define a better version of the sequential composition operator that uses the
permutation on chunks computed in each phase:

.

.

.
l1 ∈ S

C1,k1⇐==⇒ U l2 ∈ U
C2,k2⇐==⇒ V

(l1;l2) ∈ S
(C1⊗C2),(k1;k2)⇐=====⇒ V

.

get s = l2.get (l1.get s)
res s = ⟨c1, c2⟩, zip (r1 ◦ p−1

2) r2

where c1, r1 = l1.res s
and c2, r2 = l2.res (l1.get s)
and p2 = l2.perm (l1.get s)

put v (⟨c1, c2⟩, r)= l1.put (l2.put v (c2, r2)) (c1, r1 ◦ p−1
2)

where r1, r2 = unzip r
and p2 = l2.perm (l2.put v (c2, r2))

create v r = l1.create (l2.create v r2) (r1 ◦ p−1
2)

where r1, r2 = unzip r
and p2 = l2.perm (l2.create v r2)

perm s =(l2.perm (l1.get s)) ◦ (l1.perm s)

The res function applies the inverse of the permutation computed by l2 from the intermediate view before it zips
the resources computed by l1 and l2 together. This puts the resource computed by l1 into the “view order” of l2.
Likewise, the put function applies the inverse of the permutation computed by l2 to put the resource r1 into the view
order of l1.

Swap The swap lens is defined as follows:

.

.

.

⌊S1⌋·!⌊S2⌋ ⌊V2⌋·!⌊V1⌋
l1 ∈ S1

C1,k⇐⇒ V1 l2 ∈ S2
C2,k⇐⇒ V2

(l1 ∼ l2) ∈ (S1·S2)
(C2×C1),k⇐===⇒ (V2·V1)

.

get (s1·s2) = (l2.get s2)·(l1.get s1)
res (s1·s2) = (c2, c1), (r2 ++ r1)

where c1, r1 = l1.res s1

and c2, r2 = l2.res s2

perm (s1·s2) = (l2.perm s2) ∗∗ (l1.perm s1)
put (v2·v1) (c, r)= (l1.put v1 (c1, r1))·(l2.put v2 (c2, r2))

where c2, c1 = c
and r2, r1 = split(|v2|, r)

create (v2·v1) r =(l1.create v1 r1)·(l2.create v2 r2)
where r2, r1 = split(|v2|, r)

Like the concatenation lens, the get component of swap splits the source string in two and applies l1.get and l2.get
to the resulting substrings. However, before it concatenates the results, it swaps their order. The res, put, and create
functions are similar. The perm component of swap combines permutations using the (∗∗) operator

(q2 ∗∗ q1)(m) =

{
q1(m) + |q2| if m < |q1|
q2(m − |q1|) otherwise

22

which behaves similarly to the (++) operator for resources.

7. Related Work
This paper extends our previous work on lenses [3, 4, 9, 11, 12] with new mechanisms for specifying and using
alignments. The original paper on lenses [9] includes an extensive survey of relevant threads from the database and
programming languages literature. We focus here on the most closely related work.

Matching lenses grew out of the dictionary lenses we proposed previously [3], but they differ in several important
ways. First, dictionary lenses are based on a single alignment mechanism—”by keys”—whereas matching lenses
provide a generic framework for using alignments in lenses that can be instantiated with arbitrary functions. Second,
the semantic laws that govern the behavior of dictionary lenses express much weaker constraints than the matching
lens laws, which specify the handling of chunks directly and in detail. Specifically, dictionary lenses obey a law

s ∼ s′

l.put v s = l.put v s′
(EQUIVPUT)

that forces the put function to be “oblivious” to certain features of sources, which are characterized by an equivalence
relation ∼. If we instantiate ∼ with an equivalence that relates strings differing only in the relative order of chunks
having different keys we get some constraints on put—e.g., forbidding lenses that operate positionally—but they are
weaker than the conditions stated in the matching lens laws. For example, Lemma A.3 does not hold for dictionary
lenses because the type system does not explicitly track of chunks.

Much of the previous work on view update assumes that the user will modify the view using special operations
in some “update language”, and, often, these update operations can be used to infer an intended alignment. For
example, in Meertens’s work on constraint maintainers for user interfaces [19] users manipulate lists using “small
updates” for which it is easy to maintain the correspondence between source and view items. Similarly, the
bidirectional languages X and Inv [14, 20] assume that edit operations are applied to the data to yield annotated
values that indicate whether a value was newly created or deleted. Their languages handle single insertions and
deletions, but does not work well with general reorderings.

Relational view update translators often use constraints expressed in the schema to guide the selection of a source
update. For example Keller identifies criteria for view update translators requiring that the key of each source item
appears in the view [17]. Matching lenses also use a notion of keys for alignment, but they permit the correspondence
between chunks to be computed using an arbitrary heuristics.

Alignment issues also come up when bidirectional transformations are used for software model transformations.
Some systems offer “traceability links” that can be used for alignment [6, 22].

8. Conclusions and Future Work
Matching lenses provide a general solution to the problems that come up when updatable views are defined
over ordered structures. Decoupling the handling of rigidly ordered and reorderable information yields a flexible
framework that can be instantiated with arbitrary heuristics for alignment.

Our work can be extended in several directions. We are interested in instantiating the framework of matching
lenses in other settings besides strings and exploring implementation issues including algebraic optimization and
lenses for streaming data. We are also interested in exploring alignment mechanisms based on data provenance.

Acknowledgments We are grateful to Zack Ives, Alexandre Pilkiewicz, Val Tannen, Philip Wadler, and Steve
Zdancewic for helpful comments on an earlier draft of the paper. Our work is supported by the National Science
Foundation under grants IIS-0534592 Linguistic Foundations for XML View Update, and CT-0716469 Manifest
Security.

References
[1] François Bancilhon and Nicolas Spyratos. Update semantics of relational views. ACM Transactions on Database Systems, 6(4):557–

575, December 1981.

23

[2] Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and Automata. Cambridge University Press, 2009. To appear.
Manuscript available from http://www-igm.univ-mlv.fr/~berstel/LivreCodes/.

[3] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce, Alexandre Pilkiewicz, and Alan Schmitt. Boomerang: Resourceful lenses for
string data. In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), San Francisco, CA, pages
407–419, January 2008.

[4] Aaron Bohannon, Jeffrey A. Vaughan, and Benjamin C. Pierce. Relational lenses: A language for updateable views. In ACM
SIGACT–SIGMOD–SIGART Symposium on Principles of Database Systems (PODS), Chicago, TL, 2006. Extended version available
as University of Pennsylvania technical report MS-CIS-05-27.

[5] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Dual syntax for XML languages. Information Systems, 33(4–5):385–406,
2008. Short version in DBPL ’05.

[6] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr, and James F. Terwilliger. Bidirectional transforma-
tions: A cross-discipline perspective. In ICMT ’09: Proceedings of the 2nd International Conference on Theory and Practice of Model
Transformations, pages 260–283, Berlin, Heidelberg, 2009. Springer-Verlag.

[7] Umeshwar Dayal and Philip A. Bernstein. On the correct translation of update operations on relational views. ACM Transactions on
Database Systems, 7(3):381–416, September 1982.

[8] Kathleen Fisher and Robert Gruber. PADS: a domain-specific language for processing ad hoc data. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), Chicago, IL, pages 295–304, 2005.

[9] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt. Combinators for bidirectional tree
transformations: A linguistic approach to the view update problem. ACM Transactions on Programming Languages and Systems, 29(3),
May 2007.

[10] J. Nathan Foster and Benjamin C. Pierce. Boomerang Programmer’s Manual, 2009. Available from http://www.seas.upenn.edu/

~harmony/.

[11] J. Nathan Foster, Benjamin C. Pierce, and Steve Zdancewic. Updatable security views. In IEEE Computer Security Foundations
Symposium (CSF), Port Jefferson, NY, pages 60–74, July 2009.

[12] J. Nathan Foster, Alexandre Pilkiewcz, and Benjamin C. Pierce. Quotient lenses. In ACM SIGPLAN International Conference on
Functional Programming (ICFP), Victoria, BC, pages 383–395, September 2008.

[13] G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of consistent views. ACM Transactions on Database Systems
(TODS), 13(4):486–524, 1988.

[14] Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable editor for developing structured documents based on bi-
directional transformations. In Partial Evaluation and Program Manipulation (PEPM), pages 178–189, 2004. Long version to appear
in HOSC.

[15] Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable editor for developing structured documents based on
bidirectional transformations. Higher-Order and Symbolic Computation, 21(1–2), June 2008.

[16] Shinya Kawanaka and Haruo Hosoya. bixid: a bidirectional transformation language for XML. In ACM SIGPLAN International
Conference on Functional Programming (ICFP), Portland, Oregon, pages 201–214, 2006.

[17] Arthur M. Keller. Algorithms for translating view updates to database updates for views involving selections, projections, and joins.
In Proceedings of Fourth Annual ACM Symposium on Principles of Database Systems (PODS), pages 154–163, march 1985. Portland,
Oregon.

[18] David Lutterkort. Augeas–A configuration API. In Linux Symposium, Ottawa, ON, pages 47–56, 2008.

[19] Lambert Meertens. Designing constraint maintainers for user interaction, 1998. Manuscript, available from ftp://ftp.kestrel.

edu/pub/papers/meertens/dcm.ps.

[20] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. An algebraic approach to bi-directional updating. In ASIAN Symposium on
Programming Languages and Systems (APLAS), pages 2–20, November 2004.

[21] Andy Schürr. Specification of Graph Translators with Triple Graph Grammars. In International Workshop Graph-Theoretic Concepts
in Computer Science, Herrsching, Germany, volume 903 of Lecture Notes in Computer Science. Springer-Verlag, 1995.

[22] Perdita Stevens. Bidirectional model transformations in QVT: Semantic issues and open questions. In International Conference on
Model Driven Engineering Languages and Systems (MoDELS), Nashville, TN, volume 4735 of Lecture Notes in Computer Science,
pages 1–15. Springer-Verlag, 2007.

[23] Janis Voigtländer. Bidirectionalization for free! In ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages
(POPL), Savannah, GA, pages 165–176, January 2009.

24

http://www-igm.univ-mlv.fr/~berstel/LivreCodes/
http://www.seas.upenn.edu/~harmony/
http://www.seas.upenn.edu/~harmony/
ftp://ftp.kestrel.edu/pub/papers/meertens/dcm.ps
ftp://ftp.kestrel.edu/pub/papers/meertens/dcm.ps

This appendix contains proofs for each of the results described in our technical development, including well-
behavedness proofs for each primitive lens and lens combinator.

A. Matching Lens Proofs
A.1 Lemma [PutChunks]: For every matching lens l ∈ S

C,k⇐⇒ V , view v ∈ V , skeleton c ∈ C, and resource
r ∈ {|N 7→ k.C|} we have locs(l.put v (c, r)) = locs(v).

Proof: Let l ∈ S
C,k⇐⇒ V be a matching lens, v ∈ V a view, c ∈ C a skeleton, and r ∈ {|N 7→ k.C|} a resource. We

calculate as follows
locs(l.put v (c, r))

= locs(l.get (l.put v (c, r))) by GETCHUNKS for l
= locs(v) by PUTGET for l

and obtain the required equality. �

A.2 Lemma [CreateChunks]: For every matching lens l ∈ S
C,k⇐⇒ V , view v ∈ V , and resource r ∈ {|N 7→ k.C|}

we have locs(l.create v r) = locs(v).

Proof: Similar to the proof of Lemma A.1. �

A.3 Lemma [ReorderPut]: For every matching lens l ∈ S
C,k⇐⇒ V , view v ∈ V , rigid complement c ∈ C, resource

r ∈ {|N 7→ k.C|}, and permutation q ∈ Perms(v), we have q	 (l.put v (c, r)) = l.put (q	 v) (c, r ◦ q−1).

Proof: Let l ∈ S
C,k⇐⇒ V be a matching lens, v ∈ ⌊V ⌋ a view, c ∈ C a rigid complement, r ∈ {|N 7→ k.C|} a

resource, and q ∈ Perms(v) a permutation on the chunks in v such that dom(r) = (locs(v)). To shorten the proof,
define structures s1 and s2 as follows:

s1 , l.put (q	 v) (c, r ◦ q−1) s2 , q	 (l.put v (c, r))

First, we demonstrate that the sets of locations in s1 and s2 are identical, by calculating as follows:

locs(s1) = locs(l.put (q	 v) (c, r ◦ q−1)) by definition s1

= locs(q	 v) by Lemma A.1 for l
= locs(v) by definition locs and 	
= locs(l.put v (c, r)) by Lemma A.1 for l
= locs(q	 (l.put v (c, r))) by definition locs and 	
= locs(s2) by definition of s2

Next, we show that for every location x ∈ locs(s1) the chunk at x in s1 is identical to the chunk at x in s2. Let
x ∈ locs(s1) be a location. We analyze two cases.

Case q−1(x) ∈ dom(r): We calculate as follows

s1[x] = l.put (q	 v) (c, r ◦ q−1)[x] by definition s1

= k.put ((q	 v)[x]) ((r ◦ q−1)(x)) by CHUNKPUT for l
= k.put (v[q−1(x)]) (r(q−1(x))) by definition 	 and [·]
= (l.put v (c, r))[q−1(x)] by CHUNKPUT for l
= (q	 (l.put v (c, r)))[x] by definition 	 and [·]
= s2[x] by definition s2

and obtain the required equality.
Case q−1(x) ̸∈ dom(r): Similar to the previous case, using NOCHUNKPUT instead of CHUNKPUT.

25

Finally, we prove that skel(s1) = skel(s2). Observe that skel(v) = skel(q	 v). Using this fact, we calculate as
follows:

skel(s1) = skel(k.put (q	 v) (c, r ◦ q−1)) by definition s1

= skel(l.put v (c, r)) by SKELPUT for l
= skel(q	 (l.put v (c, r))) by definition skel and 	
= skel(s2) by definition s2

Putting all these facts together we have s1 = s2, which completes the proof. �

A.4 Lemma [ReorderCreate]: For every matching lens l ∈ S
C,k⇐⇒ V , view v ∈ V , rigid complement c ∈ C,

resource r ∈ {|N 7→ k.C|}, and permutation q ∈ Perms(v) we have: q	 (l.create v r) = l.create (q	 v) (r ◦ q−1).

Proof: Similar to the proof of Lemma A.3, using CHUNKCREATE and NOCHUNKCREATE instead of CHUNKPUT

and NOCHUNKPUT. �

..
l ∈ S

C,k⇐⇒ V

⌊l⌋ ∈ S
S⇐⇒ V

A.5 Lemma: Let l ∈ S
C,k⇐⇒ V be a matching lens. Then ⌊l⌋ is a basic lens in S

S⇐⇒ V .

Proof:

I GetPut: Let s ∈ S. We calculate as follows

⌊l⌋.put (⌊l⌋.get s) (⌊l⌋.res s)
= ⌊l⌋.put (l.get s) s by definition ⌊l⌋.get and ⌊l⌋.res
= l.put (l.get s) (c, r ◦ g) by definition ⌊l⌋.put

where c, r = l.res s
and g = align(l.get s, l.get s)

= l.put (l.get s) (c, r) by GETCHUNKS and RESCHUNKS

and as align(l.get s, l.get s) = id
= l.put (l.get s) (l.res s) by definition (c, r)
= s by GETPUT for l

and obtain the required equality.
I PutGet: Let v ∈ V and s ∈ S. We calculate as follows

⌊l⌋.get (⌊l⌋.put v s)
= ⌊l⌋.get (l.put v (c, r ◦ g)) by definition ⌊l⌋.put

where c, r = l.res s
and g = align(v, l.get s)

= l.get (l.put v (c, r ◦ g)) by definition ⌊l⌋.get
= v by PUTGET for l

and obtain the required equality.
I CreateGet: Let v ∈ V . We calculate as follows

⌊l⌋.get (⌊l⌋.create v)
= ⌊l⌋.get (l.create v {||}) by definition ⌊l⌋.create
= l.get (l.create v {||}) by definition ⌊l⌋.put
= v by CREATEGET for l

and obtain the required equality, which completes the proof. �

26

..
k′ ∈ S′ C′

⇐⇒ V ′ k ∈ S
C⇐⇒ V

k̂ ∈ S
C,k′⇐⇒ V

A.6 Lemma: Let k ∈ S
C⇐⇒ V and k′ ∈ S′ C′

⇐⇒ V ′ be basic lenses. Then k̂ is a matching lens in S
C,k′⇐⇒ V .

Proof:

I GetPut: Let s ∈ ⌊S⌋ be a string. As S is a language of ordinary strings, we have that s ∈ S. Using this
fact, we calculate as follows

k̂.put (k̂.get s) (k̂.res s)
= k̂.put (k.get s) (k.res s, {||}) by definition of k̂.get and k̂.res
= k.put (k.get s) (k.res s) by definition of k̂.put
= s by GETPUT for k

and obtain the required equality.
I PutGet: Let v ∈ ⌊V ⌋ be a string, c ∈ C a rigid complement, r ∈ {|N 7→ k′.C|} a resource. As V is a language of
ordinary strings, we have that v ∈ V . Using this fact, we calculate as follows

k̂.get (k̂.put v (c, r))
= k̂.get (k.put v c) by definition k̂.put
= k.get (k.put v c) by definition k̂.get
= v by PUTGET for k

and obtain the required equality.
I CreateGet: Let v ∈ ⌊V ⌋ be a string and r ∈ {|N 7→ k′.C|} a resource. As V is a language of ordinary strings, we
have that v ∈ V . Using this fact, we calculate as follows

k̂.get (k̂.create v r)
= k̂.get (k.create v) by definition k̂.create
= k.get (k.create v) by definition k̂.get
= v by CREATEGET for k

and obtain the required equality.
I GetChunks: Let s ∈ ⌊S⌋. We calculate as follows

locs(s) = ∅ as S is a language of ordinary strings
= locs(k̂.get s) as V is a language of ordinary strings

and obtain the required equality.
I ResChunks: Let s ∈ ⌊S⌋ be a string, c ∈ C a rigid complement, and r ∈ {|N 7→ k′.C|} a resource such that
(c, r) = k̂.res s. By the definition of k̂.res we have that r = {||}. Using this fact, we calculate as follows

locs(s) = ∅ as S is a language of ordinary strings
= dom(r) as r = {||}

and obtain the required equality.
I ChunkPut: Vacuously holds. Suppose, for a contradiction, that there exists a string v ∈ ⌊V ⌋, a resource
r ∈ {|N 7→ k′.C|}, and a location x ∈ (locs(v) ∩ dom(r)). As V is a language of ordinary strings, we have
locs(v) = ∅, which contradicts x ∈ locs(v).

27

I ChunkCreate: Vacuously holds by the same argument as the proof for CHUNKPUT.

I NoChunkPut: Vacuously holds by the same argument as the proof for CHUNKPUT.

I NoChunkCreate: Vacuously holds by the same argument as the proof for CHUNKPUT.

I SkelPut: Let v ∈ ⌊V ⌋ and v′ ∈ ⌊V ⌋ be strings, c ∈ C a rigid complement, and r ∈ {|N 7→ k′.C|} and
r′ ∈ {|N 7→ k′.C|} resources such that skel(v) = skel(v′). As V is a language of ordinary strings, we have that
v = v′. Using this fact, we calculate as follows:

skel(k̂.put v (c, r))
= skel(k.put v c) by definition k̂.put
= skel(k.put v′ c) as v = v′

= skel(k̂.put v′ (c, r′)) by definition k̂.put

and obtain the required equality.

I SkelCreate: Similar to the proof for SKELPUT. �

..
k ∈ S

C⇐⇒ V

⟨k⟩ ∈ ⟨S⟩ {�},k⇐==⇒ ⟨V ⟩

A.7 Lemma: Let k ∈ S
C⇐⇒ V be a basic lens. Then ⟨k⟩ is a matching lens in ⟨S⟩ {�},k⇐==⇒ ⟨V ⟩.

Proof:

I GetPut: Let s ∈ ⌊⟨S⟩⌋. By the semantics of chunk-annotated regular expressions we also have s ∈ S. Us-
ing this fact, we calculate as follows

⟨k⟩.put (⟨k⟩.get s) (⟨k⟩.res s)
= ⟨k⟩.put (k.get s) (�, {|1 7→ k.res s|}) by definition ⟨k⟩.get and ⟨k⟩.res
= k.put (k.get s) ({|1 7→ k.res s|}(1)) by definition ⟨k⟩.put with 1 ∈ dom({|1 7→ k.res s|})
= k.put (k.get s) (k.res s) by definition finite map application
= s by GETPUT for k

and obtain the required equality.

I PutGet: Let v ∈ ⌊⟨V ⟩⌋ be a string, � ∈ {�} a rigid complement, and r ∈ {|N 7→ k.C|} a resource. By the
semantics of chunk-annotated regular expressions we also have v ∈ V . Using this fact, we calculate as follows

⟨k⟩.get (⟨k⟩.put v (�, r))

=
{

k.get (k.put v r(1)) if 1 ∈ dom(r)
k.get (k.create v) otherwise

by the definition of ⟨k⟩.get and ⟨k⟩.put

= v by PUTGET or CREATEGET for l

and obtain the required equality.

I CreateGet: Similar to the proof for PUTGET.

I GetChunks: Let s ∈ ⌊⟨S⟩⌋. We calculate as follows

locs(s) = {1} by definition locs
= locs(⟨k⟩.get s) by definition locs

and obtain the required equality.

28

I ResChunks: Let s ∈ ⌊⟨S⟩⌋ be a string, � ∈ {�} a rigid complement, and r ∈ {|N 7→ k.C|} a resource such that
(�, r) = ⟨k⟩.res s. We calculate as follows

dom(r) = dom({|1 7→ k.res s|}) by definition ⟨k⟩.res with r = ⟨k⟩.res s
= {1} by definition dom
= locs(s) by definition locs

and obtain the required equality.

I ChunkPut: Let v ∈ ⌊⟨V ⟩⌋ be a string, � ∈ {�} a rigid complement, r ∈ {|N 7→ k.C|} a resource, and
x ∈ (locs(v) ∩ dom(r)) a location. As locs(v) = {1} we must have that x = 1 and 1 ∈ dom(r). Using these facts
and definitions, we calculate as follows

(⟨k⟩.put v (�, r))[x]
= ⟨k⟩.put v (c, r) by definition [·] and x = 1
= k.put v (r(1)) by definition ⟨k⟩.put and as 1 ∈ dom(r)
= k.put (v[x]) (r(x)) by definition [·] and x = 1

and obtain the required equality.

I ChunkCreate: Similar to the proof of CHUNKPUT.

I NoChunkPut: Let v ∈ ⌊⟨V ⟩⌋ be a string, � ∈ {�} a rigid complement, r ∈ {|N 7→ k.C|} a resource, and
x ∈ (locs(v) \ dom(r)) a location. As locs(v) = {1} we must have that x = 1 and 1 ̸∈ dom(r). Using these facts
and definitions, we calculate as follows

(⟨k⟩.put v (�, r))[x]
= ⟨k⟩.put v (c, r) by definition [·] and x = 1
= k.create v by definition ⟨k⟩.put and as 1 ̸∈ dom(r)
= k.create (v[x]) by definition [·] and x = 1

and obtain the required equality.

I NoChunkCreate: Similar to the proof for NOCHUNKPUT.

I SkelPut: Let v ∈ ⌊⟨V ⟩⌋ and v′ ∈ ⌊⟨V ⟩⌋ be strings, � ∈ {�} a rigid complement, and r ∈ {|N 7→ k.C|} and
r′ ∈ {|N 7→ k.C|} resources such that skel(v) = skel(v). We calculate as follows

skel(⟨k⟩.put v (�, r)) = � by definition skel
= skel(⟨k⟩.put v′ (�, r′)) by definition skel

and obtain the required equality.

I SkelCreate: Similar to the proof for SKELPUT, which completes the proof. �

.
.

⌊S1⌋·!⌊S2⌋ ⌊V1⌋·!⌊V2⌋
l1 ∈ S1

C1,k⇐⇒ V1 l2 ∈ S2
C2,k⇐⇒ V2

(l1·l2) ∈ (S1·S2)
(C1×C2),k⇐===⇒ (V1·V2)

A.8 Lemma: Let l1 ∈ S1
C1,k⇐⇒ V1 and l2 ∈ S2

C2,k⇐⇒ V2 be matching lenses such that ⌊S1⌋·!⌊S2⌋ and ⌊V1⌋·!⌊V2⌋.
Then (l1·l2) is a matching lens in (S1·S2)

(C1×C2),k⇐===⇒ (V1·V2).

29

Proof:

I GetPut: Let s ∈ ⌊S1·S2⌋. As ⌊S1⌋·!⌊S2⌋ there exist unique strings s1 ∈ ⌊S1⌋ and s2 ∈ ⌊S2⌋ such that
s = (s1·s2). Using this fact, we calculate as follows

(l1·l2).put ((l1·l2).get s) ((l1·l2).res s)
= (l1·l2).put ((l1·l2).get (s1·s2)) ((l1·l2).res (s1·s2)) by definition s1 and s2

= (l1·l2).put ((l1.get s1)·(l2.get s2)) ((c1, c2), r1 ++ r2) by definition (l1·l2).get and (l1·l2).res
where c1, r1 = l1.res s1

and c2, r2 = l2.res s2

= (l1.put (l1.get s1) (c1, r
′
1))·(l2.put (l2.get s2) (c2, r

′
2)) by definition (l1·l2).put with ⌊V1⌋·!⌊V2⌋

where r′1, r
′
2 = split(|l.get s1|, r1 ++ r2) and cod(l1.get) = ⌊V1⌋ and cod(l2.get) = ⌊V2⌋

= (l1.put (l1.get s1) (c1, r1))·(l2.put (l2.get s2) (c2, r2)) by GETCHUNKS and RESCHUNKS for l1
and definition split

= (s1·s2) by GETPUT for l1 and l2
= s by definition s1 and s2

and obtain the required equality.

I PutGet: Let v ∈ ⌊V1·V2⌋ and (c1, c2) ∈ (C1 × C2) and r ∈ {|N 7→ k.C ′|}. As ⌊V1⌋·!⌊V2⌋ there exist unique
strings v1 ∈ ⌊V1⌋ and v2 ∈ ⌊V2⌋ such that v = v1·v2. Using this fact, we calculate as follows

(l1·l2).get ((l1·l2).put v ((c1, c2), r))
= (l1·l2).get ((l1·l2).put (v1·v2) ((c1, c2), r)) by definition v1 and v2

= (l1·l2).get ((l1.put v1 (c1, r1))·(l2.put v2 (c2, r2))) by definition (l1·l2).put
where r1, r2 = split(|v1|, r)

= (l1.get (l1.put v1 (c1, r1)))·(l2.get (l2.put v2 (c2, r2))) by definition (l1·l2).get with ⌊S1⌋·!⌊S2⌋
and cod(l1.put) = ⌊S1⌋ and cod(l2.put) = ⌊S2⌋

= (v1·v2) by PUTGET for l1 and l2
= v by definition v1 and v2

and obtain the required equality.

I CreateGet: Similar to the proof for PUTGET, using CREATEGET for l1 and l2 instead of PUTGET.

I GetChunks: Let s ∈ ⌊S1·S2⌋. As ⌊S1⌋·!⌊S2⌋ there exist unique strings s1 ∈ ⌊S1⌋ and s2 ∈ ⌊S2⌋ such that
s = s1·s2. Using this fact, we calculate as follows

locs(s)
= locs(s1·s2) by definition s1 and s2

= {1, . . . , (|s1| + |s2|)} by definition locs
= {1, . . . , (|l1.get s1| + |l2.get s2|)} by GETCHUNKS for l1 and l2
= locs((l1.get s1)·(l2.get s2)) by definition locs
= locs((l1·l2).get (s1·s2)) by definition (l1·l2).get
= locs((l1·l2).get s) by definition s1 and s2

and obtain the required equality.

I ResChunks: Let s ∈ ⌊S1·S2⌋ be a string, (c1, c2) ∈ (C1 × C2) a rigid complement, and r ∈ {|N 7→ k.C|} a
resource with ((c1, c2), r) = (l1·l2).res s. As ⌊S1⌋·!⌊S2⌋ there exist unique strings s1 ∈ ⌊S1⌋ and s2 ∈ ⌊S2⌋ such

30

that s = (s1·s2). Using this fact, we calculate as follows

dom(r)
= dom(r1 ++ r2) by definition r and (l1·l2).res

where r1, c1 = l1.res s1

and r2, c2 = l2.res s2

= dom(r1) ∪ {i + max(dom(r1)) | i ∈ dom(r2)} by definition (++) and dom
= (locs(s1)) ∪ {i + max(locs(s1)) | i ∈ (locs(s2))} by RESCHUNKS for l1 and l2
= {1, . . . , (|s1| + |s2|)} by definition | · |
= locs(s1·s2) by definition locs
= locs(s) by definition s1 and s2

and obtain the required equality.
I ChunkPut: Let v ∈ ⌊V1·V2⌋ and (c1, c2) ∈ (C1 × C2) and r ∈ {|N 7→ k.C|} and x ∈ (locs(v) ∩ dom(r)). As
⌊V1⌋·!⌊V2⌋ there exist unique strings v1 ∈ ⌊V1⌋ and v2 ∈ ⌊V2⌋ such that v = (v1·v2). We analyze two cases.

Case x ∈ locs(v1): We calculate as follows

((l1·l2).put v ((c1, c2), r))[x]
= ((l1·l2).put (v1·v2) ((c1, c2), r))[x] by definition v1 and v2

= ((l1.put v1 (c1, r1))·(l2.put v2 (c2, r2)))[x] by definition (l1·l2).put
where r1, r2 = split(|v1|, r)

= (l1.put v1 (c1, r1))[x] by Lemma A.1 and definition [·]
= k.put (v1[x]) (r1(x)) by CHUNKPUT for l1
= k.put ((v1·v2)[x]) ((r1 ++ r2)(x)) by definition [·] and (++) and finite map application
= k.put (v[x]) (r(x)) by definition split and v1 and v2 and r1 and r2

and obtain the required equality.
Case x ̸∈ (locs(v1)): Similar to the previous case, using CHUNKPUT for l2 instead of l1.

I ChunkCreate: Similar to the proof for CHUNKPUT.
I NoChunkPut: Similar to the proof for CHUNKPUT.
I NoChunkCreate: Similar to the proof for CHUNKPUT.
I SkelPut: Let v ∈ ⌊V1·V2⌋ and v′ ∈ ⌊V1·V2⌋ be strings, (c1, c2) ∈ (C1 × C2) a rigid complement, and
r ∈ {|N 7→ k.C|} and r′ ∈ {|N 7→ k.C|} resources such that skel(v) = skel(v′). As ⌊V1⌋·!⌊V2⌋ there exist
unique strings v1 ∈ ⌊V1⌋ and v2 ∈ ⌊V2⌋ and v′1 ∈ ⌊V1⌋ and v′2 ∈ ⌊V2⌋ such that v = (v1·v2) and v′ = (v′1·v′2).
Moreover, using the definition of skel we have that skel(v1) = skel(v′1) and skel(v2) = skel(v′2). Using these facts
and definitions, we calculate as follows

skel((l1·l2).put v (c1, c2, r))
= skel((l1·l2).put (v1·v2) ((c1, c2), r)) by definition v1 and v2

= skel(l1.put v1 (c1, r1))·(l2.put v2 (c2, r2)) by definition (l1·l2).put
where r1, r2 = split(|v1|, r)

= skel(l1.put v1 (c1, r1))·skel(l2.put v2 (c2, r2)) by definition skel
= skel(l1.put v′1 (c1, r

′
1))·skel(l2.put v′2 (c2, r

′
2)) by SKELPUT for l1 and l2

where r′1, r
′
2 = split(|v′1|, r′)

= skel(l1.put v′1 (c1, r
′
1))·(l2.put v′2 (c2, r

′
2)) by definition skel

= skel((l1·l2).put (v′1·v′2) ((c1, c2), r′)) by definition (l1·l2).put and r′1 and r′2
= skel((l1·l2).put v′ ((c1, c2), r)) by definition v′1 and v′2

and obtain the required equality.
I SkelCreate: Similar to the proof for SKELPUT, which completes the proof. �

31

..
l ∈ S

C,k⇐⇒ V ⌊S⌋!∗ ⌊V ⌋!∗

l∗ ∈ S∗ (C list),k⇐==⇒ V ∗

A.9 Lemma: Let l ∈ S
C,k⇐⇒ V be a matching lens such that ⌊S⌋!∗ and ⌊V ⌋!∗. Then l∗ is a matching lens in

S∗ K list,R⇐==⇒ V ∗.

Proof:

I GetPut: Let s ∈ ⌊S∗⌋. As ⌊S⌋!∗ there exist unique strings s1 ∈ ⌊S⌋ to sn ∈ ⌊S⌋ such that s = (s1 · · · sn).
To shorten the proof, let (ci, ri) = l.res si for i ∈ {1, . . . , n} and r = (r1 ++ . . . ++ rn). Also let r′′0 = r and
(r′i, r

′′
i) = split(|l.get si|,)r′′i for i ∈ {1, . . . , n}. Using these facts and definitions, we calculate as follows

l∗.put (l∗.gets) (l∗.res s)
= l∗.put (l∗.get(s1 · · · sn)) (l∗.res (s1 · · · sn)) by definition s1 to sn

= l∗.put ((l.get s1) · · · (l.get sn)) ([c1, . . . , cn], r) by definition l∗.get and l∗.res
= (l.put (l.get s1) (c1, r

′
1)) · · · (l.put (l.get sn) (cn, r′n)) by definition l∗.put with ⌊V ⌋!∗ and cod(l.get) = ⌊V ⌋

= (l.put (l.get s1) (c1, r1)) · · · (l.put (l.get sn) (cn, rn)) by GETCHUNKS and RESCHUNKS for l
and definition split

= (s1 · · · sn) by GETPUT for l
= s by definition s1 to sn

and obtain the required equality.

I PutGet: Let v ∈ ⌊V ∗⌋ be a string, [c1, . . . , cm] ∈ C list a rigid complement, and r ∈ {|N 7→ k.C|} a
resource. As ⌊V ⌋!∗ there exist unique strings v1 ∈ ⌊V ⌋ to vn ∈ ⌊V ⌋ such that v = (v1 · · · vn). Let r′0 = r
and (ri, r

′
i) = split(|vi|, r′(i−1)) for i ∈ {1, . . . , n}. Using these facts and definitions, we calculate as follows

l∗.get (l∗.put v ([c1, . . . , cm], r))
= l∗.get (l∗.put (v1 · · · vn) ([c1, . . . , cm], r)) by definition of v1 to vn

= l∗.get (s′1 · · · s′n) by the definition of l∗.put

where s′i =
{

l.put vi (ci, ri) i ∈ {1, . . . ,min(n, m)}
l.create vi ri i ∈ {m + 1, . . . , n}

= (l.get s′1) · · · (l.get s′n) by the definition of l∗.get with ⌊V ⌋!∗
and cod(l.put) = cod(l.create) = ⌊V ⌋

= (v1 · · · vn) by PUTGET and CREATEGET for l
= v by the definition of v1 to vn

and obtain the required equality.

I CreateGet: Similar to the proof for PUTGET, using CREATEGET for l.

I GetChunks: Let s ∈ ⌊S∗⌋. As ⌊S⌋!∗ there exist unique strings s1 ∈ ⌊S⌋ to sn ∈ ⌊S⌋ such that s = (s1 · · · sn).
Using these facts, we calculate as follows

locs(s)
= locs(s1 · · · sn) by definition s1 to sn

= {1, . . . ,
∑n

i=1 |si|} by definition locs
= {1, . . . ,

∑n
i=1 |l.get si|} by GETCHUNKS for l

= locs((l.get s1) · · · (l.get sn)) by definition locs with ⌊V ⌋!∗ and cod(l.get) = ⌊V ⌋
= locs(l∗.get (s1 · · · sn)) by definition l∗.get
= locs(l∗.get s) by definition s1 to sn

32

and obtain the required equality.

I ResChunks: Let s ∈ ⌊S∗⌋ be a string, c ∈ (C list) a rigid complement, and r ∈ {|N 7→ k.C|}) a resource such
that c, r) = l∗.res s. As S!∗ there exist unique strings s1 ∈ ⌊S⌋ to sn ∈ ⌊S⌋ such that s = (s1 · · · sn). To shorten
the proof, let (ci, ri) = l.res si for i ∈ {1, . . . , n}. Using these fact and definitions, we calculate as follows

dom(r)
= dom(r1 ++ . . . ++ rn) by definition l∗.res
=

∪n
i=1 {j +

∑(i−1)
k=1 max(dom(rk)) | j ∈ dom(ri)} by definition (++) and dom

=
∪n

i=1 {j +
∑(i−1)

k=1 max(locs(l.get xk)) | j ∈ locs(l.get si)} by RESCHUNKS for l
= {1, . . . ,

∑
i = 1n |l.get si|} by definition | · |

= locs((l.get s1) · · · (l.get sn)) by definition locs
= locs(l∗.get (s1 · · · sn)) by definition l∗.get
= locs(l∗.get s) by definition s1 to sn

and obtain the required equality.

I ChunkPut: Let v ∈ ⌊V ∗⌋ be a string, [c1, . . . , cm] ∈ (C list) a rigid complement, r ∈ {|N 7→ k.C|} a resource,
and x ∈ (locs(v) ∩ dom(r)) a location. As ⌊V ⌋!∗ there exist unique strings v1 ∈ ⌊V ⌋ to vn ∈ ⌊V ⌋ such that
v = (v1 · · · vn). To shorten the proof, let r′0 = r and (ri, r

′
i) = split(|vi|, r′(i−1)) for i ∈ {1, . . . , n}. We analyze

several cases.

Case x ∈ locs(v1): We calculate as follows

(l∗.put v ([c1, . . . , cm], r))[x]
= (l∗.put (v1 · · · vn) ([c1, . . . , cm], r))[x] by definition v1 to vn

= (s′1 · · · s′n)[x] by definition l∗.put

where s′i =
{

l.put vi (ci, ri) i ∈ {1, . . . ,min(n,m)}
l.create vi ri i ∈ {m + 1, . . . , n}

= s′1[x] by Lemmas A.1 and A.2 and definition [·]
= k.put v1 (r1(x)) by CHUNKPUT and CHUNKCREATE for l
= k.put (v1 · · · vn)[x] ((r1 ++ . . . ++ rn)(x)) by definition [·] and (++)

and finite map application
= k.put v[x] (r(x)) by definition split and v1 to vn and r1 to rn

and obtain the required equality.
Case x ̸∈ locs(v1): Similar to the previous case.

I ChunkCreate: Similar to the proof for CHUNKPUT.

I NoChunkPut: Similar to the proof for CHUNKPUT.

I NoChunkCreate: Similar to the proof for CHUNKPUT.

I SkelPut: Let v ∈ ⌊V ∗⌋ and v′ ∈ ⌊V ∗⌋ be strings, [c1, . . . , cm] ∈ (C list) a rigid complement, and
r ∈ {|N 7→ k.C|} and r′ ∈ {|N 7→ k.C|} resources such that skel(v) = skel(v′). As ⌊V ⌋!∗ there exist unique
strings v1 ∈ ⌊V ⌋ to vn ∈ ⌊V ⌋ and v′1 ∈ ⌊V ⌋ to v′n ∈ ⌊V ⌋ such that v = (v1 · · · vn) and v′ = (v1 · · · v′o). Moreover,
by the definition of skel we have that n = o and skel(vi) = skel(v′i) for i ∈ {1, . . . , n}. To shorten the proof, let

r′0 = r (ri, r
′
i) = split(|vi|, r′(i−1)) for i ∈ {1, . . . , n}

r′′0 = r′ (r′′i , r′′′i) = split(|v′i|, r′′′(i−1)) for i ∈ {1, . . . , o}

33

Using these facts and definitions, we calculate as follows

skel(l∗.put v ([c1, . . . , cm], r))
= skel(l∗.put (v1 · · · vn) ([c1, . . . , cm], r)) by definition v1 to vn

= skel(s′1 · · · s′n) by the definition of l∗.put

where s′i =
{

l.put vi (ci, ri) i ∈ {1, . . . ,min(n, m)}
l.create vi ri i ∈ {m + 1, . . . , n}

= (skel(s′1)) · · · (skel(s′n)) by the definition of skel
= (skel(s′′1)) · · · (skel(s′′n)) by SKELPUT and SKELCREATE for l

where s′′i =
{

l.put v′i (ci, r
′′
i) i ∈ {1, . . . ,min(n,m)}

l.create v′i r′′i i ∈ {m + 1, . . . , n}
= skel(s′′1 · · · s′′n) by the definition of skel
= skel(l∗.put (v′1 · · · v′n) ([c1, . . . , cm], r′)) by definition l∗.put and r′′1 to r′′n
= skel(l∗.put v′ ([c1, . . . , cm], r′)) by definition v′1 to v′n

and obtain the required equality.
I SkelCreate: Similar to the proof for SKELPUT. �

.
.

⌊S1⌋ ∩ ⌊S2⌋ = ∅ ⌊V1⌋ ∩ ⌊V2⌋ ⊆ ⌊V1 ∩ V2⌋
l1 ∈ S1

C1,k⇐⇒ V1 l2 ∈ S2
C2,k⇐⇒ V2

(l1 | l2) ∈ (S1 ∪ S2)
(C1+C2),k⇐===⇒ (V1 ∪ V2)

A.10 Lemma: Let l1 ∈ S1
C1,k⇐⇒ V1 and l2 ∈ S2

C2,k⇐⇒ V2 be matching lenses such that ⌊S1⌋ ∩ ⌊S2⌋ = ∅ and
⌊V1⌋ ∩ ⌊V2⌋ ⊆ ⌊V1 ∩ V2⌋. Then (l1 | l2) is a matching lens in (S1 ∪ S2)

(C1+C2),k⇐===⇒ (V1 ∪ V2).

Proof:

I GetPut: Let s ∈ ⌊S1 ∪ S2⌋. We analyze two cases.

Case s ∈ ⌊S1⌋: We calculate as follows

(l1 | l2).put ((l1 | l2).get s) ((l1 | l2).res s)
= (l1 | l2).put (l1.get s) (Inl(c1), r) by definition (l1 | l2).get and (l1 | l2).res with s ∈ ⌊S1⌋

where c1, r = l.res s
= l1.put (l1.get s) (c1, r) by the definition of (l1 | l2).put with cod(l.get) = ⌊V1⌋
= l1.put (l1.get s) (l1.res s) by the definition of (c1, r)
= s by PUTGET for l1

and obtain the required equality, which finishes the case.
Case s ∈ S2: Symmetric to the previous case, using l2 instead of l1.

I PutGet: Let v ∈ ⌊V1 ∪ V2⌋ and c ∈ (C1 + C2) and r ∈ {|N 7→ k.C|}. We analyze several cases.

Case v ∈ ⌊V1⌋ and c = Inl(c1): We calculate as follows

(l1 | l2).get ((l1 | l2).put v (c, r))
= (l1 | l2).get (l1.put v (c1, r)) by definition (l1 | l2).put and the assumptions of the case
= l1.get (l1.put v (c1, r)) by definition (l1 | l2).get with cod(l1.put) = ⌊S1⌋
= v by PUTGET for l

and obtain the required equality.

34

Case v ∈ ⌊V2⌋ and c = Inr(c2): Symmetric to the previous case, using l2 instead of l1.
Case v ̸∈ ⌊V2⌋ and c = Inr(c2): We calculate as follows

(l1 | l2).get ((l1 | l2).put v (c, r))
= (l1 | l2).get (l1.create v r) by definition (l1 | l2).put and the assumptions of the case
= l1.get (l1.create v r) by definition (l1 | l2).get with cod(l1.create) = ⌊S1⌋
= v by CREATEGET for l

and obtain the required equality.
Case v ̸∈ ⌊V1⌋ and c = Inl(c1): Symmetric to the previous case, using l2 instead of l1.

I CreateGet: Similar to the proof for PUTGET.
I GetChunks: Let s ∈ ⌊S1 ∪ S2⌋. As (⌊V1⌋ ∩ ⌊V2⌋) ⊆ ⌊V1 ∩ V2⌋, for every v ∈ ⌊V1 ∩ V2⌋ we have that the set of
chunks of v specified by V1 and by V2 are identical. We analyze two cases.

Case s ∈ ⌊S1⌋: We calculate as follows

locs(s) = locs(l1.get s) by GETCHUNKS for l1
= locs((l1 | l2).get s) by definition (l1 | l2).get with s ∈ ⌊S1⌋

and obtain the required equality.
Case s ∈ ⌊S2⌋: Symmetric to the previous case, using l2 instead of l1.

I ResChunks: Let s ∈ ⌊S1 ∪ S2⌋ be a string, c ∈ (C1 + C2) a rigid complement, and r ∈ {|N 7→ k.C|} a resource
such that (c, r) = (l1 | l2).res s. We analyze two cases.

Case s ∈ ⌊S1⌋: By the assumption of the case and the definition of (l1 | l2).res we have that c = Inl(c1) where
c1, r = l1.res s. The required equality, locs(s) = dom(r), is immediate by RESCHUNKS for l1.

Case s ∈ ⌊S1⌋: Symmetric to the previous case, using l2 instead of l1.

I ChunkPut: Let v ∈ ⌊V1 ∪ V2⌋ be a string, k ∈ (C1 + C2) a rigid complement, r ∈ {|N 7→ k.C|} a resource, and
x ∈ (locs(v) ∩ dom(r)) a location. We analyze several cases.

Case v ∈ ⌊V1⌋ and c = Inl(c1): As (⌊V1⌋ ∩ ⌊V2⌋) ⊆ ⌊V1 ∩ V2⌋, we have that x is also a location of a chunk as
specified by V1. Using this fact, we calculate as follows

(l1 | l2).put v (c, r)[x]
= l1.put v (c1, r)[x] by definition (l1 | l2).put with v ∈ ⌊V1⌋ and c = Inl(c1)
= k.put (v[x]) (r(x)) by CHUNKPUT for l1

and obtain the required equality.
Case v ∈ ⌊V2⌋ and c = Inr(c2): Symmetric to the previous case, using l2 instead of l2.
Case v ̸∈ ⌊V2⌋ and c = Inr(c2): We calculate as follows.

(l1 | l2).put v (c, r)[x]
= l1.create v r[x] by definition (l1 | l2).put with v ̸∈ ⌊V2⌋ and c = Inr(c2)
= k.put (v[x]) (r(x)) by CHUNKCREATE for l1

and obtain the required equality.
Case v ̸∈ ⌊V1⌋ and c = Inl(c1): Symmetric to the previous case, using l1 instead of l2.

I ChunkCreate: Similar to the proof for CHUNKPUT.
I NoChunkPut: Similar to the proof for CHUNKPUT.
I NoChunkCreate: Similar to the proof for CHUNKPUT.
I SkelPut: Let v ∈ ⌊V1∪V2⌋ and v′ ∈ ⌊V1∪V2⌋ be strings, c ∈ (C1+C2) a rigid complement, and r ∈ {|N 7→ k.C|}
and r′ ∈ {|N 7→ k.C|} resources such that skel(v) = skel(v′). We analyze several cases.

35

Case v ∈ ⌊V1⌋ and v′ ∈ ⌊V1⌋ and c = Inl(c1): Using the assumptions of the case, we calculate as follows

skel((l1 | l2).put v (c, r))
= skel(l1.put v (c1, r)) by definition (l1 | l2).put with v ∈ ⌊V1⌋ and c = Inl(c1)
= skel(l1.put v′ (c1, r

′)) by SKELPUT for l1
= skel((l1 | l2).put v′ (c, r′)) by definition (l1 | l2).put with v′ ∈ ⌊V1⌋ and c = Inl(c1)

and obtain the required equality.
Case v ∈ ⌊V2⌋ and v′ ∈ ⌊V2⌋ and c = Inr(c2): Symmetric to the previous case, using l2 instead of l1.
Case v ∈ ⌊V1⌋ and v′ ∈ ⌊V1⌋ and c = Inr(c2): Similar to the first case, using SKELCREATE instead of SKELPUT

Case v ∈ ⌊V2⌋ and v′ ∈ ⌊V2⌋ and c = Inl(c1): Similar to the first case, using SKELCREATE instead of SKELPUT.
Case v ∈ ⌊V1⌋ and v′ ̸∈ ⌊V1⌋: Can’t happen. As skel(v) = skel(v′), we have the sets of locations locs(v) and

locs(v′) are identical. Let v′′ be the string obtained from v by setting the chunk at every location in locs(v) to the
corresponding chunk in v′. By construction, we have v′ = v′. By chunk compatibility we also have v′′ ∈ ⌊V1⌋.
However, by the assumptions of the case, we have v′ ̸∈ ⌊V1⌋, which is a contradiction.

Case v ∈ ⌊V2⌋ and v′ ̸∈ ⌊V2⌋: Symmetric to the previous case.

I SkelCreate: Similar to the proof for SKELPUT, which completes the proof. �

..
l1 ∈ S

C1,k1⇐==⇒ U l2 ∈ U
C2,k2⇐==⇒ V

(l1;l2) ∈ S
(C1⊗C2),(k1;k2)⇐=====⇒ V

A.11 Lemma: Let l1 ∈ S
C1,k1⇐==⇒ U and l2 ∈ U

C2,k2⇐==⇒ V be matching lenses. Then (l1;l2) is a matching lens in
S

(C1⊗C2),(k1;k2)⇐=====⇒ V .

Proof:

I GetPut: Let s ∈ ⌊S⌋. We calculate as follows

(l1;l2).put ((l1;l2).get s) ((l1;l2).res s)
= (l1;l2).put (l2.get (l1.get s)) (⟨c1, c2⟩, zip r1 r2) by definition (l1;l2).get and (l1;l2).res

where c1, r1 = l1.res s
and c2, r2 = l2.res (l1.get s)

= l1.put (l2.put (l2.get (l1.get s)) (c2, r
′
2)) (c1, r

′
1) by definition (l1;l2).put

with r′1, r
′
2 = unzip (zip r1 r2)

= l1.put (l2.put (l2.get (l1.get s)) (c2, r2)) (c1, r1) as unzip(zip r1 r2) = r1, r2

= l1.put (l2.put (l2.get (l1.get s)) (l2.res (l1.get s))) (l1.res s) by definition (c1, r1) and (c2, r2)
= l1.put (l1.get s) (l1.res s) by GETPUT for l2
= s by GETPUT for l1

and obtain the required equality.
I PutGet: Let v ∈ V and ⟨c1, c2⟩ ∈ (C1 ⊗ C2) and r ∈ {|N 7→ (k1;k2).C|}. We calculate as follows

(l1;l2).get ((l1;l2).put v (⟨c1, c2⟩, r))
= (l1;l2).get (l1.put (l2.put v (c2, r2)) (c1, r1)) by definition (l1;l2).put

where r1, r2 = unzip r
= l2.get (l1.get (l1.put (l2.put v (c2, r2)) (c1, r1))) by definition (l1;l2).get
= l2.get (l2.put v (c2, r2)) by PUTGET for l1
= v by PUTGET for l2

36

and obtain the required equality.
I CreateGet: Similar to the proof for PUTGET, using CREATEGET instead of PUTGET.
I GetChunks: Let s ∈ ⌊S⌋. We calculate as follows

locs(s) = locs(l1.get s) by GETCHUNKS for l1
= locs(l2.get (l1.get s)) by GETCHUNKS for l2
= locs((l1;l2).get s) by definition (l1;l2).get

and obtain the required equality.
I ResChunks: Let s ∈ ⌊S⌋ be a string, (c1, c2) ∈ (C1 ⊗ C2), a rigid complement, and r ∈ {|N 7→ (k1;k2).C|} a
resource with (c, r) = (l1;l2).res s. The proof goes in three steps.

First, we show that the set of locations in s is equal to the domain of the resource computed from s using l1.res.

locs(s) = dom(r1) by RESCHUNKS for l1
where c1, r2 = l1.res s

Next, we show that the set of locations in s is equal to the domain of the resource computed from (l1.get s) using
l2.res.

locs(s) = locs(l1.get s) by GETCHUNKS for l1
dom(r2) by RESCHUNKS for l2
where c2, r2 = l2.res (l1.get s)

Finally, using these facts, we calculate as follows

locs(s)
= dom(zip r1 r2) by definition zip with dom(r1) = locs(s) = dom(r2)
= dom(r) by definition (l1;l2).res

and obtain the required equality.
I ChunkPut: Let v ∈ ⌊V ⌋ be a string, ⟨c1, c2⟩ ∈ (C1⊗C2) a rigid complement, r ∈ {|N 7→ (k1;k2).C|} a resource,
and x ∈ (locs(v) ∩ dom(r)) a location. We calculate as follows

((l1;l2).put v (⟨c1, c2⟩, r))[x]
= (l1.put (l2.put (c2, r2)) (c1, r1))[x] by definition (l1;l2).put

where r1, r2 = unzip r
= k1.put ((l2.put v (c2, r2))[x]) (r1(x)) by CHUNKPUT for l1
= k1.put (k2.put (v[x]) (r2(x))) (r1(x)) by CHUNKPUT for l2
= (k1;k2).put (v[x]) ⟨r1(x), r2(x)⟩ by definition of (k1;k2).put
= (k1;k2).put (v[x]) (r(x)) by definition (r1, r2) and unzip

and obtain the required equality.
I ChunkCreate: Similar to the proof for CHUNKPUT.
I NoChunkPut: Similar to the proof for CHUNKPUT.
I NoChunkCreate: Similar to the proof for CHUNKPUT.
I SkelPut: Let v ∈ ⌊V ⌋ and v′ ∈ ⌊V ⌋ be strings ⟨c1, c2⟩ ∈ C1 ⊗ C2 a rigid complement, and r ∈ {|N 7→ k.C|}
and r′ ∈ {|N 7→ k.C|} resources such that skel(v) = skel(v′). To shorten the proof, let r1 and r2 and r′1 and r′2 be
resources, and u and u′ be strings defined as follows:

r1, r2 = unzip r
r′1, r

′
2 = unzip r′

u = l2.put v (c2, r2)
u′ = l2.put v′ (c2, r

′
2)

37

Observe that skel(u) = skel(u′) by SKELPUT for l2. Using these facts and definitions, we calculate as follows

skel((l1;l2).put v (⟨c1, c2⟩, r))
= skel(l1.put (l2.put v (c2, r2)) (c1, r1)) by definition (l1;l2).put
= skel(l1.put u (c1, r1)) by definition u
= skel(l1.put u′ (c1, r

′
1)) by SKELPUT for l1

= skel(l1.put (l2.put v′ (c2, r
′
2)) (c1, r

′
1)) by definition u′

= skel((l1;l2).put v′ (⟨c2, c2⟩, r′)) by definition (l1;l2).put

and obtain the required equality.
I SkelCreate: Similar to the proof for SKELPUT, which finishes the proof. �

.
.

⌊S1⌋·!⌊S2⌋ ⌊V2⌋·!⌊V1⌋
l1 ∈ S1

C1,k⇐⇒ V1 l2 ∈ S2
C2,k⇐⇒ V2

(l1 ∼ l2) ∈ (S1·S2)
(C2×C1),k⇐===⇒ (V2·V1)

A.12 Lemma: Let l1 ∈ S1
C1,k⇐⇒ V1 and l2 ∈ S2

C2,k⇐⇒ V2 be lenses with ⌊S1⌋·!⌊S2⌋ and ⌊V1⌋·!⌊V2⌋. Then (l1 ∼ l2)
is a matching lens in (S1·S2)

(C2×C1),k⇐===⇒ (V2·V1).

Proof:

I GetPut: Let s ∈ ⌊S1·S2⌋. As ⌊S1⌋·!⌊S2⌋ there exist unique strings s1 ∈ ⌊S1⌋ and s2 ∈ ⌊S2⌋ such that
s = (s1·s2). Using this fact, we calculate as follows

(l1 ∼ l2).put ((l1 ∼ l2).get s) ((l1 ∼ l2).res s)
= (l1 ∼ l2).put ((l1 ∼ l2).get (s1·s2)) ((l1 ∼ l2).res (s1·s2)) by definition s1 and s2

= (l1 ∼ l2).put ((l2.get s2)·(l1.get s1)) ((c2, c1), r2 ++ r1) by definition (l1 ∼ l2).get and (l1 ∼ l2).res
where c1, r1 = l1.res s1

and c2, r2 = l2.res s2

= (l1.put (l1.get s1) (c1, r
′
1))·(l2.put (l2.get s2) (c2, r

′
2)) by definition (l1 ∼ l2).put with ⌊V2⌋·!⌊V1⌋

where r′1, r
′
2 = split(|v2|, r2 ++ r1) and cod(l2.get) = ⌊V2⌋ and cod(l1.get) = ⌊V1⌋

= (l1.put (l1.get s1) (c1, r1))·(l2.put (l2.get s2) (c2, r2)) by GETCHUNKS and RESCHUNKS for l1
and definition split

= (l1.put (l1.get s1) (l1.res s1))·(l2.put (l2.get s2) (l2.res s2)) by definition (c1, r1) and (c2, r2)
= (s1·s2) by GETPUT for l1 and l2
= s by definition s1 and s2

and obtain the required equality.
I PutGet: Let v ∈ ⌊V1·V2⌋ and (c2, c1) ∈ (C2 × C1) and r ∈ {|N 7→ k.C|}. As ⌊V2⌋·!⌊V1⌋ there exist unique
strings v2 ∈ ⌊V2⌋ and v1 ∈ ⌊V1⌋ such that v = (v2·v1). Using this fact, we calculate as follows

(l1 ∼ l2).get ((l1 ∼ l2).put v ((c2, c1), r))
= (l1 ∼ l2).get ((l1 ∼ l2).put (v2·v1) ((c2, c1), r)) by definition v2 and v1

= (l1 ∼ l2).get ((l1.put v1 (c1, r1))·(l2.put v2 (c2, r2))) by definition (l1 ∼ l2).put
where r2, r1 = split(|v2|, r)

= (l2.get (l2.put v2 (c2, r2)))·(l1.get (l1.put v1 (c1, r1))) by definition (l1 ∼ l2).get and ⌊S1⌋·!⌊S2⌋
with cod(l1.put) = ⌊S1⌋ and cod(l2.put) = ⌊S2⌋

= (v2·v1) by PUTGET for l2 and l1
= v by definition v2 and v1

38

and obtain the required equality.
I CreateGet: Similar to the proof for PUTGET, using CREATEGET for l1 and l2 instead of PUTGET.
I GetChunks: Let s ∈ ⌊S1·S2⌋. As ⌊S1⌋·!⌊S2⌋ there exist unique strings s1 ∈ ⌊S1⌋ and s2 ∈ ⌊S2⌋ such that
s = s1·s2. Using this fact, we calculate as follows

locs(s)
= locs(s1·s2) by definition s1 and s2

= {1, . . . , (|s1| + |s2|)} by definition locs
= {1, . . . , (|l1.get s1| + |l2.get s2|)} by GETCHUNKS for l1 and l2
= locs((l2.get s2)·(l1.get s1)) by definition locs
= locs((l1 ∼ l2).get (s1·s2)) by definition (l1 ∼ l2).get
= locs((l1 ∼ l2).get s) by definition s1 and s2

and obtain the required equality.
I ResChunks: Let s ∈ ⌊S1·S2⌋ be a string, (c1, c2) ∈ (C1 × C2) a rigid complement, and r ∈ {|N 7→ k.C|} a
resource with ((c1, c2), r) = (l1 ∼ l2).res s. As ⌊S1⌋·!⌊S2⌋ there exist unique strings s1 ∈ ⌊S1⌋ and s2 ∈ ⌊S2⌋ such
that s = (s1·s2). Using this fact, we calculate as follows

dom(r)
= dom(r2 ++ r1) by definition r and (l1 ∼ l2).res

where r1, c1 = l1.res s1

and r2, c2 = l2.res s2

= dom(r2) ∪ {i + max(dom(r2)) | i ∈ dom(r1)} by definition (++) and dom
= locs(s2) ∪ {i + max(locs(s2)) | i ∈ locs(s1)} by RESCHUNKS for l2 and l1
= {1, . . . , (|s2| + |s1|)} by definition | · |
= locs(s1·s2) by definition locs
= locs(s) by definition s1 and s2

and obtain the required equality.
I ChunkPut: Let v ∈ ⌊V2·V1⌋ and (c2, c1) ∈ (C2 × C1) and r ∈ {|N 7→ k.C|} and x ∈ (locs(v) ∩ dom(r)). As
⌊V2⌋·!⌊V1⌋ there exist unique strings v2 ∈ ⌊V2⌋ and v1 ∈ ⌊V1⌋ such that v = (v2·v1). To shorten the proof, define
the following resources and permutations:

r2, r1 = split(|v2|, r)
q2 = l2.perm (l2.put v2 (c2, r2))
q1 = l1.perm (l1.put v1 (c1, r1))
q = (q2 ∗∗ q1)

We analyze two cases.

Case x ∈ locs(v2): Let y be a location satisfying q(y) = x. From x ∈ locs(v2) and the definition of (∗∗), we have
that y > n1 and q(y) = q2(y − n1) where n1 = |l.put v1 (c1, r1)|. Using these facts, we calculate as follows:

((l1 ∼ l2).put v ((c2, c1), r))[y]
= ((l1 ∼ l2).put (v2·v1) ((c2, c1), r))[y] by definition v2 and v1

= ((l1.put v1 (c1, r1))·(l2.put v2 (c2, r2)))[y] by definition (l1 ∼ l2).put
where r2, r2 = split(|v2|, r)

= l2.put v2 (c2, r2)[y − n1] by definition [·]
= k.put v2[x] (r2(x)) by CHUNKPUT for l2
= k.put (v1·v2)[x] ((r2 ++ r1)(x)) by definition [·] and (++) and finite map application
= k.put (v[x]) (r(x)) by definition split and v1 and v2 and r1 and r2

and obtain the required equality.

39

Case x ̸∈ locs(v2): Similar to the previous case.

I ChunkCreate: Similar to the proof for CHUNKPUT, using CHUNKCREATE for l1 and l2 instead of CHUNKPUT.

I SkelPut: Let v ∈ ⌊V2·V1⌋ and v′ ∈ ⌊V2·V1⌋ be strings, (c1, c2) ∈ (C1 × C2) a rigid complement, and
r ∈ {|N 7→ k.C|} and r′ ∈ {|N 7→ k.C|} resources such that skel(v) = skel(v′). As ⌊V2⌋·!⌊V1⌋ there exist
unique strings v2 ∈ ⌊V2⌋ and v1 ∈ ⌊V1⌋ and v′2 ∈ ⌊V2⌋ and v′1 ∈ ⌊V1⌋ such that v = (v2·v1) and v′ = (v′2·v′1).
Moreover, from the definition of skel we have that skel(v2) = skel(v′2) and skel(v1) = skel(v′1). Using these facts
and definitions, we calculate as follows

skel((l1 ∼ l2).put v (c1, c2, r))
= skel((l1 ∼ l2).put (v2·v1) ((c1, c2), r)) by definition v2 and v1

= skel(l1.put v1 (c1, r1))·(l2.put v2 (c2, r2)) by definition (l1 ∼ l2).put
where r1, r2 = split(|v2|, r)

= skel(l1.put v1 (c1, r1))·skel(l2.put v2 (c2, r2)) by definition skel
= skel(l1.put v′1 (c1, r

′
1))·skel(l2.put v′2 (c2, r

′
2)) by SKELPUT for l1 and l2

where r′1, r
′
2 = split(|v′1|, r′)

= skel(l1.put v′1 (c1, r
′
1))·(l2.put v′2 (c2, r

′
2)) by definition skel

= skel((l1 ∼ l2).put (v′2·v′1) ((c1, c2), r′)) by definition (l1 ∼ l2).put and r′1 and r′2
= skel((l1 ∼ l2).put v′ ((c1, c2), r)) by definition v′2 and v′1

and obtain the required equality.

I SkelCreate: Similar to the proof for SKELPUT, which finishes the proof. �

40

	Matching Lenses: Alignment and View Update
	Recommended Citation

	Matching Lenses: Alignment and View Update
	Abstract
	Comments

	Introduction
	Example
	Semantics of Matching Lenses
	Notation
	Matching Lenses

	Matching Lenses for String Data
	Notation
	Primitives

	Alignments
	Extensions
	Nested Chunks
	Tags
	Swap

	Related Work
	Conclusions and Future Work
	Matching Lens Proofs

