13 research outputs found

    Thermal structure of the northern outer Albanides and adjacent Adriatic crustal sector, and implications for geothermal energy systems

    Get PDF
    none8sĂŹopenSantini, S.; Basilici, M.; Invernizzi, C.; Mazzoli, S.; Megna, A.; Pierantoni, P.P.; Spina, V.; Teloni, S.Santini, S.; Basilici, M.; Invernizzi, C.; Mazzoli, S.; Megna, A.; Pierantoni, P. P.; Spina, V.; Teloni, S

    Reconstruction of a Segment of the UNESCO World Heritage Hadrian’s Villa Tunnel Network by Integrated GPR, Magnetic–Paleomagnetic, and Electric Resistivity Prospections

    Get PDF
    The authors are grateful to the Director of the Villa Adriana and Villa d’Este, Andrea Bruciati, for kindly allowing us to survey the archaeological area and to Benedetta Adembri for facilitating the research on site. We are also grateful to Francesco Ferruti and the students that helped us in the data acquisition. Finally, we thank Alessandro Bertani for his help in the acquisition and formal analysis of aerial photogrammetry data. This paper also benefited from four accurate reviews that allowed us to improve the manuscript.The following are available online at https://zenodo.org/record/3351757#.XVIUHdIRWUl, Figure S1: Local reference frames used for the acquisition of GPR data, Figure S2: UAV orthophoto of the study area (Plutonium−Inferi complex) with indication of the excavated areas, Tables S1–S13: Relevant migrated and unmigrated GPR profiles for areas 1 through 13, Table S10A, transversal migrated and unmigrated GPR profiles for Areas 10.Hadrian’s Villa is an ancient Roman archaeological site built over an ignimbritic tuff and characterized by abundant iron oxides, strong remnant magnetization, and elevated magnetic susceptibility. These properties account for the high-amplitude magnetic anomalies observed in this site and were used as a primary tool to detect deep archaeological features consisting of air-filled and soil-filled cavities of the tuff. An integrated magnetic, paleomagnetic, radar, and electric resistivity survey was performed in the Plutonium-Inferi sector of Hadrian’s Villa to outline a segment of the underground system of tunnels that link different zones of the villa. A preliminary paleomagnetic analysis of the bedrock unit and a high-resolution topographic survey by aerial photogrammetry allowed us to perform a computer-assisted modelling of the observed magnetic anomalies, with respect to the archaeological sources. The intrinsic ambiguity of this procedure was reduced through the analysis of ground penetrating radar and electric resistivity profiles, while a comprehensive picture of the buried archaeological features was built by integration of the magnetization model with radar amplitude maps. The final subsurface model of the Plutonium-Inferi complex shows that the observed anomalies are mostly due to the presence of tunnels, skylights, and a system of ditches excavated in the tuff.This research was funded by the Università degli Studi di Camerino, grants FAR Schettino 2016–2018 and FAR Pierantoni 2016–2018, and by the University of Oxford, Eugene Ludwig Fund, New College

    Preliminary assessment of the geothermal potential of Rosario de la Frontera area (Salta, NW Argentina): Insight from hydro-geological, hydro-geochemical and structural investigations

    No full text
    This work is part of a project aimed to the development and application of hydrogeological, hydrogeochemical and geological methodologies for the study of the geothermal system of Rosario de La Frontera (NW Argentina). The surface thermal manifestations of this area, whose temperatures range from 22.6 to 92.6 °C, are mainly located in the northern sector of Sierra de la Candelaria anticline. This regional structure crops out between the provinces of Salta and Tucuman (NW Argentina), at the foothills of the central Andean retro-wedge. The present investigation focuses on hydrogeological and structural data, and isotopic compositions (18O, D and 3H) of thermal springs. Preliminary results allowed to define: i) the meteoric origin of spring water and their long (more than 50 years) residence time at depth, ii) a positive water balance, ranging between 2 and 4 millions of m3/yr, and iii) a conservative geothermal reservoir volume of about 39 km3, iv) a geothermal potential with Er = 5.6*1018 J and Ef = 0.8*1018 J

    Reconstruction of a segment of the UNESCO World Heritage Hadrian’s Villa Tunnel Network by integrated GPR, magnetic–paleomagnetic, and electric resistivity prospections

    No full text
    Hadrian’s Villa is an ancient Roman archaeological site built over an ignimbritic tuff and characterized by abundant iron oxides, strong remnant magnetization, and elevated magnetic susceptibility. These properties account for the high-amplitude magnetic anomalies observed in this site and were used as a primary tool to detect deep archaeological features consisting of air-filled and soil-filled cavities of the tuff. An integrated magnetic, paleomagnetic, radar, and electric resistivity survey was performed in the Plutonium-Inferi sector of Hadrian’s Villa to outline a segment of the underground system of tunnels that link different zones of the villa. A preliminary paleomagnetic analysis of the bedrock unit and a high-resolution topographic survey by aerial photogrammetry allowed us to perform a computer-assisted modelling of the observed magnetic anomalies, with respect to the archaeological sources. The intrinsic ambiguity of this procedure was reduced through the analysis of ground penetrating radar and electric resistivity profiles, while a comprehensive picture of the buried archaeological features was built by integration of the magnetization model with radar amplitude maps. The final subsurface model of the Plutonium-Inferi complex shows that the observed anomalies are mostly due to the presence of tunnels, skylights, and a system of ditches excavated in the tuff.</p
    corecore