153 research outputs found

    Antibodies to Serine Proteases in the Antiphospholipid Syndrome

    Get PDF
    It is generally accepted that the major autoantigen for antiphospholipid antibodies (aPL) in the antiphospholipid syndrome (APS) is β2-glycoprotein I (β2GPI). However, a recent study has revealed that some aPL bind to certain conformational epitope(s) on β2GPI shared by the homologous enzymatic domains of several serine proteases involved in hemostasis and fibrinolysis. Importantly, some serine protease–reactive aPL correspondingly hinder anticoagulant regulation and resolution of clots. These results extend several early findings of aPL binding to other coagulation factors and provide a new perspective about some aPL in terms of binding specificities and related functional properties in promoting thrombosis. Moreover, a recent immunological and pathological study of a panel of human IgG monoclonal aPL showed that aPL with strong binding to thrombin promote in vivo venous thrombosis and leukocyte adherence, suggesting that aPL reactivity with thrombin may be a good predictor for pathogenic potentials of aPL

    Proof-of-concept study demonstrating the pathogenicity of affinity-purified IgG antibodies directed to domain I of β2-glycoprotein I in a mouse model of anti-phospholipid antibody-induced thrombosis.

    Get PDF
    IgG aPL against domain I of β2-glycoprotein I (β2GPI) [anti-DI (aDI)] is associated with the pathogenesis of APS, an autoimmune disease defined by thrombosis and pregnancy morbidity. To date, however, no study has demonstrated direct pathogenicity of IgG aDI in vivo. In this proof-of-concept study, we designed a novel system to affinity purify polyclonal aDI aPL in order to assess its prothrombotic ability in a well-characterized mouse microcirculation model for APS

    A Novel Dimeric Inhibitor Targeting Beta2GPI in Beta2GPI/Antibody Complexes Implicated in Antiphospholipid Syndrome

    Get PDF
    Background: b2GPI is a major antigen for autoantibodies associated with antiphospholipid syndrome (APS), an autoimmune disease characterized by thrombosis and recurrent pregnancy loss. Only the dimeric form of b2GPI generated by anti-b2GPI antibodies is pathologically important, in contrast to monomeric b2GPI which is abundant in plasma. Principal Findings: We created a dimeric inhibitor, A1-A1, to selectively target b2GPI in b2GPI/antibody complexes. To make this inhibitor, we isolated the first ligand-binding module from ApoER2 (A1) and connected two A1 modules with a flexible linker. A1-A1 interferes with two pathologically important interactions in APS, the binding of b2GPI/antibody complexes with anionic phospholipids and ApoER2. We compared the efficiency of A1-A1 to monomeric A1 for inhibition of the binding of b2GPI/antibody complexes to anionic phospholipids. We tested the inhibition of b2GPI present in human serum, b2GPI purified from human plasma and the individual domain V of b2GPI. We demonstrated that when b2GPI/antibody complexes are formed, A1-A1 is much more effective than A1 in inhibition of the binding of b2GPI to cardiolipin, regardless of the source of b2GPI. Similarly, A1-A1 strongly inhibits the binding of dimerized domain V of b2GPI to cardiolipin compared to the monomeric A1 inhibitor. In the absence of anti-b2GPI antibodies, both A1-A1 and A1 only weakly inhibit the binding of pathologically inactive monomeric b2GPI to cardiolipin. Conclusions: Our results suggest that the approach of using a dimeric inhibitor to block b2GPI in the pathologica

    Clinical and neuroimaging correlates of antiphospholipid antibodies in multiple sclerosis: a preliminary study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The presence of antiphospholipid antibodies (APLA) in multiple sclerosis (MS) patients has been reported frequently but no clear relationship between APLA and the clinical and neuroimaging features of MS have heretofore been shown. We assessed the clinical and neuroimaging features of MS patients with plasma APLA.</p> <p>Methods</p> <p>A consecutive cohort of 24 subjects with relapsing-remitting (RR) MS were studied of whom 7 were in remission (Rem) and 17 in exacerbation (Exc). All subjects were examined and underwent MRI of brain. Patients' plasma was tested by standard ELISA for the presence of both IgM and IgG antibodies using a panel of 6 targets: cardiolipin (CL), β2 glycoprotein I (β2GPI), Factor VII/VIIa (FVIIa), phosphatidylcholine (PC), phosphatidylserine (PS) and phosphatidylethanolamine (PE).</p> <p>Results</p> <p>In exacerbation up to 80% of MS subjects had elevated titers of IgM antibodies directed against the above antigens. However, in remission, less than half of MS patients had elevated titers of IgM antibodies against one or more of the above antigens. This difference was significant, p < 0.01, for all 6 target antigens. Interestingly, none of the MS patients had elevated plasma titers of IgG against any of the target antigens tested. Correlation analysis between MRI enhancing lesions and plasma levels of APLA revealed high correlation for aPC, aPS and aFVIIa (p ≤ 0.0065), a trend for aPE and aCL (p = 0.056), and no correlation for aβ2GP1. The strongest correlation was for aFVIIa, p = 0.0002.</p> <p>Conclusion</p> <p>The findings of this preliminary study show that increased APLA IgM is associated with exacerbations of MS. Currently, the significance of this association in pathogenesis of MS remains unknown. However, systematic longitudinal studies to measure APLA in larger cohorts of patients with relapsing-remitting MS, particularly before and after treatment with immunomodulatory agents, are needed to confirm these preliminary findings.</p

    Antiphospholipid syndrome; its implication in cardiovascular diseases: a review

    Get PDF
    Antiphospholipid syndrome (APLS) is a rare syndrome mainly characterized by several hyper-coagulable complications and therefore, implicated in the operated cardiac surgery patient. APLS comprises clinical features such as arterial or venous thromboses, valve disease, coronary artery disease, intracardiac thrombus formation, pulmonary hypertension and dilated cardiomyopathy. The most commonly affected valve is the mitral, followed by the aortic and tricuspid valve. For APLS diagnosis essential is the detection of so-called antiphospholipid antibodies (aPL) as anticardiolipin antibodies (aCL) or lupus anticoagulant (LA). Minor alterations in the anticoagulation, infection, and surgical stress may trigger widespread thrombosis. The incidence of thrombosis is highest during the following perioperative periods: preoperatively during the withdrawal of warfarin, postoperatively during the period of hypercoagulability despite warfarin or heparin therapy, or postoperatively before adequate anticoagulation achievement. Cardiac valvular pathology includes irregular thickening of the valve leaflets due to deposition of immune complexes that may lead to vegetations and valve dysfunction; a significant risk factor for stroke. Patients with APLS are at increased risk for thrombosis and adequate anticoagulation is of vital importance during cardiopulmonary bypass (CPB). A successful outcome requires multidisciplinary management in order to prevent thrombotic or bleeding complications and to manage perioperative anticoagulation. More work and reporting on anticoagulation management and adjuvant therapy in patients with APLS during extracorporeal circulation are necessary
    corecore