116 research outputs found

    Eurekan faults on northern Ellesmere Island, Arctic Canada: from Cenozoic strike-slip tectonics to recent seismicity

    Get PDF
    The Eurekan deformation is a partially contractional Cenozoic tectonic event that affected large parts of the Arctic region. In the study area on northern Ellesmere Island, major NE-SW trending strike-slip faults occur, which are related to the Eurekan deformation. The outcrop data show that left-lateral strike-slip kinematics slightly dominate, but also right-lateral kinematics were documented. Cross-cutting relationships of the individual faults give evidence for multiple fault reactivations within major strike-slip zones. The reconstructed paleostress fields show two phases. The first phase started with a N-S compression and shifted over a NNE-SSW compression into a NNW-SSE compression. The second phase was a WNW-ESE compression. The paleostress field evolution reflects the movements of Greenland. During the Eurekan phase 1, Greenland moved northward and during Eurekan phase 2 it moved to the WNW. These motions likely controlled the stress field on northern Ellesmere Island. From the paleostress field analyses and the orientation of the strike-slip faults in the study area, it can be derived that the Eurekan phase 1 deformation is characterized by left-lateral strike-slip faults, whereas most-likely during Eurekan phase 2 the majority of right-lateral strike-slip faults formed. The paleostress field analysis implies that many Eurekan faults are reactivated Ellesmerian faults. Recent seismic events indicate ongoing tectonic activity at some of the major strike-slip faults. This sheds new light on the geodynamics of northern Ellesmere Island, which was mechanically coupled to the Greenland plate, and implies that under the recent stress field, earthquakes at strike-slip faults are still possible and some of these faults were active in at least three phases over the last 350 Myr

    The Mesozoic-Cenozoic tectonic evolution of the New Siberian Islands, NE Russia

    Get PDF
    On the New Siberian Islands the rocks of the east Russian Arctic shelf are exposed and allow an assessment of the structural evolution of the region. Tectonic fabrics provide evidence of three palaeo-shortening directions (NE–SW, WNW–ESE and NNW–SSE to NNE–SSW) and one set of palaeo-extension directions revealed a NE–SW to NNE–SSW direction. The contractional deformation is most likely the expression of the Cretaceous formation of the South Anyui fold–thrust belt. The NE–SW shortening is the most prominent tectonic phase in the study area. The WNW–ESE and NNW–SSE to NNE–SSW-oriented palaeo-shortening directions are also most likely related to fold belt formation; the latter might also have resulted from a bend in the suture zone. The younger Cenozoic NE–SW to NNE–SSW extensional direction is interpreted as a consequence of rifting in the Laptev Sea

    In memoriam Dr. Franz Tessensohn

    Get PDF

    Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction

    Get PDF
    Stratigraphic records from northwestern Pangea provide unique insight into global processes that occurred during the latest Permian extinction (LPE). We examined a detailed geochemical record of the Festningen section, Spitsbergen. A stepwise extinction is noted as: starting with (1) loss of carbonate shelly macrofauna, followed by (2) loss of siliceous sponges in conjunction with an abrupt change in ichnofabrics as well as dramatic change in the terrestrial environment, and (3) final loss of all trace fossils. We interpret loss of carbonate producers as related to shoaling of the lysocline in higher latitudes, in relationship to building atmospheric CO2. The loss of siliceous sponges is coincident with the global LPE event and is related to onset of high loading rates of toxic metals (Hg, As, Co) that we suggest are derived from Siberian Trap eruptions. The final extinction stage is coincident with redox-sen- sitive trace metal and other proxy data that suggest onset of anoxia after the other extinction events. These results show a remarkable record of progressive environmental deterioration in northwestern Pangea during the extinction crises

    From extreme environments on Earth to space: Buttiauxella sp. MASE-IM-9 and Salinisphaera shabanensis as new model organisms in Astrobiology

    Get PDF
    Mars analogue environments are some of the most extreme locations on Earth. Their unique combination of multiples extremes (e.g. high salinity, anoxia, and low nutrient availability) make them a valuable source of new polyextremophilic microbes in general and for exploring the limits of life. These are seen as vital sources of information for Astrobiology, with implications for planetary protection and the search for life outside our planet. [...

    Surviving Mars: new insights into the persistence of facultative anaerobic microbes from analogue sites

    Get PDF
    Mars analogue environments are some of the most extreme locations on Earth. Their unique combination of multiples extremes (e.g. high salinity, anoxia and low nutrient availability) make them valuable sources for finding new polyextremophilic microbes, and for exploring the limits of life. Mars, especially at its surface, is still considered to be very hostile to life but it probably possesses geological subsurface niches where the occurrence of (polyextremophilic) life is conceivable. Despite their well-recognized relevance, current knowledge on the capability of (facultative) anaerobic microbes to withstand extraterrestrial/Martian conditions, either as single strains or in communities, is still very sparse. Therefore, space experiments simulating the Martian environmental conditions by using space as a tool for astrobiological research are needed to substantiate the hypotheses of habitability of Mars. Addressing this knowledge gap is one of the main goals of the project MEXEM (Mars EXposed Extremophiles Mixture), where selected model organisms will be subjected to space for a period of 3 months. These experiments will take place on the Exobiology facility (currently under development and implementation), located outside the International Space Station. Such space experiments require a series of preliminary tests and ground data collection for the selected microbial strains. Here, we report on the survivability of Salinisphaera shabanensis and Buttiauxella sp. MASE-IM-9 after exposure to Mars-relevant stress factors (such as desiccation and ultraviolet (UV) radiation under anoxia). Both organisms showed survival after anoxic desiccation for up to 3 months but this could be further extended (nearly doubled) by adding artificial Mars regolith (MGS-1S; 0.5% wt/v) and sucrose (0.1 M). Survival after desiccation was also observed when both organisms were mixed before treatment. Mixing also positively influenced survival after exposure to polychromatic Mars-like UV radiation (200–400 nm) up to 12 kJ m−2, both in suspension and in a desiccated for

    World ocean review: Mit den Meeren leben 6: Arktis und Antarktis – extrem, klimarelevant, gefährdet

    Get PDF
    Die sechste Ausgabe des „World Ocean Review“ (WOR) widmet sich der Arktis und Antarktis, diesen zwei extremen und ausgesprochen gegensätzlichen Regionen der Erde. Mit profunden Informationen zur Entstehungs- und Entdeckungsgeschichte bietet der WOR 6 ein tiefes Verständnis der Bedeutung der Pole für das Leben auf unserer Erde. Er zeigt zudem die zu beobachtenden Veränderungen in der Tier-und Pflanzenwelt und analysiert die zum Teil schon dramatischen Folgen, die der Klimawandel in diesen äußerst gefährdeten Regionen bewirkt

    Eocene Compressive Deformation in Arctic Canada, North Greenland and Svalbard and Its Plate Tectonic Causes

    Get PDF

    Involvement of a Tertiary Foreland Basin in the Eurekan Foldbelt Deformation, NW Coast of Kane Basin, Ellesmere Island, Canada

    Get PDF
    • …
    corecore