35 research outputs found
Nonthermal atmospheric pressure plasma enhances mouse limb bud survival, growth, and elongation.
The enhanced differentiation of mesenchymal cells into chondrocytes or osteoblasts is of paramount importance in tissue engineering and regenerative therapies. A newly emerging body of evidence demonstrates that appendage regeneration is dependent on reactive oxygen species (ROS) production and signaling. Thus, we hypothesized that mesenchymal cell stimulation by nonthermal (NT)-plasma, which produces and induces ROS, would (1) promote skeletal cell differentiation and (2) limb autopod development. Stimulation with a single treatment of NT-plasma enhanced survival, growth, and elongation of mouse limb autopods in an in vitro organ culture system. Noticeable changes included enhanced development of digit length and definition of digit separation. These changes were coordinated with enhanced Wnt signaling in the distal apical epidermal ridge (AER) and presumptive joint regions. Autopod development continued to advance for approximately 144âh in culture, seemingly overcoming the negative culture environment usually observed in this in vitro system. Real-time quantitative polymerase chain reaction analysis confirmed the up-regulation of chondrogenic transcripts. Mechanistically, NT-plasma increased the number of ROS positive cells in the dorsal epithelium, mesenchyme, and the distal tip of each phalange behind the AER, determined using dihydrorhodamine. The importance of ROS production/signaling during development was further demonstrated by the stunting of digital outgrowth when anti-oxidants were applied. Results of this study show NT-plasma initiated and amplified ROS intracellular signaling to enhance development of the autopod. Parallels between development and regeneration suggest that the potential use of NT-plasma could extend to both tissue engineering and clinical applications to enhance fracture healing, trauma repair, and bone fusion
Effects of N-acetyl-cysteine on endothelial function and inflammation in patients with type 2 diabetes mellitus
Endothelial dysfunction has been associated with premature vascular disease. There is increasing data that N-acetyl-cysteine (NAC) may prevent or improve endothelial dysfunction. The aim of this study was to assess the effects of NAC on endothelial function in patients with type 2 diabetes mellitus, a population at high risk for endothelial dysfunction. Twenty-four patients with diabetes mellitus were assigned randomly to initial therapy with either 900 mg NAC or placebo twice daily in a double-blind, cross-over study design. Flowmediated vasodilation (FMD) of the brachial artery was assessed at baseline, after four weeks of therapy, after a four-week wash-out period, and after another four weeks on the opposite treatment. Plasma and red blood cell glutathione levels and high-sensitivity C-reactive protein (CRP) were measured at all four visits. At baseline, FMD was moderately impaired (3.7±2.9%). There was no significant change in FMD after four weeks of NAC therapy as compared to placebo (0.1±3.6% vs. 1.2±4.2%). Similarly, there was no significant change in glutathione levels. However, median CRP decreased from 2.35 to 2.14 mg/L during NAC therapy (p=0.04), while it increased from 2.24 to 2.65 mg/L with placebo. No side effects were noted during the treatment period. In this double-blind, randomized cross-over study, four weeks of oral NAC therapy failed to improve endothelial dysfunction in patients with diabetes mellitus. However, NAC therapy decreased CRP levels, suggesting that this compound may have some efficacy in reducing systemic inflammation
A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors
IceCube is a cubic-kilometer Cherenkov telescope operating at the South Pole. The main goal of IceCube is the detection of astrophysical neutrinos and the identification of their sources. High-energy muon neutrinos are observed via the secondary muons produced in charge current interactions with nuclei in the ice. Currently, the best performing muon track directional reconstruction is based on a maximum likelihood method using the arrival time distribution of Cherenkov photons registered by the experiment\u27s photomultipliers. A known systematic shortcoming of the prevailing method is to assume a continuous energy loss along the muon track. However at energies >1 TeV the light yield from muons is dominated by stochastic showers. This paper discusses a generalized ansatz where the expected arrival time distribution is parametrized by a stochastic muon energy loss pattern. This more realistic parametrization of the loss profile leads to an improvement of the muon angular resolution of up to 20% for through-going tracks and up to a factor 2 for starting tracks over existing algorithms. Additionally, the procedure to estimate the directional reconstruction uncertainty has been improved to be more robust against numerical errors