135 research outputs found

    HTS Motors in Aircraft Propulsion: Design Considerations

    Get PDF
    ©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.Current high temperature superconducting (HTS) wires exhibit high current densities enabling their use in electrical rotating machinery. The possibility of designing high power density superconducting motors operating at reasonable temperatures allows for new applications in mobile systems in which size and weight represent key design parameters. Thus, all-electric aircrafts represent a promising application for HTS motors. The design of such a complex system as an aircraft consists of a multi-variable optimization that requires computer models and advanced design procedures. This paper presents a specific sizing model of superconducting propulsion motors to be used in aircraft design. The model also takes into account the cooling system. The requirements for this application are presented in terms of power and dynamics as well as a load profile corresponding to a typical mission. We discuss the design implications of using a superconducting motor on an aircraft as well as the integration of the electrical propulsion in the aircraft, and the scaling laws derived from physics-based modeling of HTS motors

    Renewable Diesel from Algal Lipids: An Integrated Baseline for Cost, Emissions, and Resource Potential from a Harmonized Model

    Get PDF
    The U.S. Department of Energy's Biomass Program has begun an initiative to obtain consistent quantitative metrics for algal biofuel production to establish an 'integrated baseline' by harmonizing and combining the Program's national resource assessment (RA), techno-economic analysis (TEA), and life-cycle analysis (LCA) models. The baseline attempts to represent a plausible near-term production scenario with freshwater microalgae growth, extraction of lipids, and conversion via hydroprocessing to produce a renewable diesel (RD) blendstock. Differences in the prior TEA and LCA models were reconciled (harmonized) and the RA model was used to prioritize and select the most favorable consortium of sites that supports production of 5 billion gallons per year of RD. Aligning the TEA and LCA models produced slightly higher costs and emissions compared to the pre-harmonized results. However, after then applying the productivities predicted by the RA model (13 g/m2/d on annual average vs. 25 g/m2/d in the original models), the integrated baseline resulted in markedly higher costs and emissions. The relationship between performance (cost and emissions) and either productivity or lipid fraction was found to be non-linear, and important implications on the TEA and LCA results were observed after introducing seasonal variability from the RA model. Increasing productivity and lipid fraction alone was insufficient to achieve cost and emission targets; however, combined with lower energy, less expensive alternative technology scenarios, emissions and costs were substantially reduced

    From Computation to the First-Person : Auditory-Verbal Hallucinations and Delusions of Thought Interference in Schizophrenia-Spectrum Psychoses

    Get PDF
    Schizophrenia-spectrum psychoses are highly complex and heterogeneous disorders that necessitate multiple lines of scientific inquiry and levels of explanation. In recent years, both computational and phenomenological approaches to the understanding of mental illness have received much interest, and significant progress has been made in both fields. However, there has been relatively little progress bridging investigations in these seemingly disparate fields. In this conceptual review and collaborative project from the 4th Meeting of the International Consortium on Hallucination Research, we aim to facilitate the beginning of such dialogue between fields and put forward the argument that computational psychiatry and phenomenology can in fact inform each other, rather than being viewed as isolated or even incompatible approaches. We begin with an overview of phenomenological observations on the interrelationships between auditory-verbal hallucinations (AVH) and delusional thoughts in general, before moving on to review several theoretical frameworks and empirical findings in the computational modeling of AVH. We then relate the computational models to the phenomenological accounts, with a special focus on AVH and delusions that involve the senses of agency and ownership of thought (delusions of thought interference). Finally, we offer some tentative directions for future research, emphasizing the importance of a mutual understanding between separate lines of inquiry

    Transcriptional Analysis of Lactobacillus brevis to N-Butanol and Ferulic Acid Stress Responses

    Get PDF
    The presence of anti-microbial phenolic compounds, such as the model compound ferulic acid, in biomass hydrolysates pose significant challenges to the widespread use of biomass in conjunction with whole cell biocatalysis or fermentation. Currently, these inhibitory compounds must be removed through additional downstream processing or sufficiently diluted to create environments suitable for most industrially important microbial strains. Simultaneously, product toxicity must also be overcome to allow for efficient production of next generation biofuels such as n-butanol, isopropanol, and others from these low cost feedstocks.This study explores the high ferulic acid and n-butanol tolerance in Lactobacillus brevis, a lactic acid bacterium often found in fermentation processes, by global transcriptional response analysis. The transcriptional profile of L. brevis reveals that the presence of ferulic acid triggers the expression of currently uncharacterized membrane proteins, possibly in an effort to counteract ferulic acid induced changes in membrane fluidity and ion leakage. In contrast to the ferulic acid stress response, n-butanol challenges to growing cultures primarily induce genes within the fatty acid synthesis pathway and reduced the proportion of 19:1 cyclopropane fatty acid within the L. brevis membrane. Both inhibitors also triggered generalized stress responses. Separate attempts to alter flux through the Escherichia coli fatty acid synthesis by overexpressing acetyl-CoA carboxylase subunits and deleting cyclopropane fatty acid synthase (cfa) both failed to improve n-butanol tolerance in E. coli, indicating that additional components of the stress response are required to confer n-butanol resistance.Several promising routes for understanding both ferulic acid and n-butanol tolerance have been identified from L. brevis gene expression data. These insights may be used to guide further engineering of model industrial organisms to better tolerate both classes of inhibitors to enable facile production of biofuels from lignocellulosic biomass

    Schizophrenia and the Scaffolded Self

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this recordA family of recent externalist approaches in philosophy of mind argues that our psychological capacities are synchronically and diachronically “scaffolded” by external (i.e., beyond-the-brain) resources. Despite much interest in this topic, however, it has not found its way to philosophy of psychiatry in a substantive way. I here consider how these “scaffolded” approaches to mind and self might inform debates in phenomenological psychopathology. First, I introduce the idea of “affective scaffolding”. I distinguish three forms of affective scaffolding and support this taxonomy by appealing to different sources of empirical work. Second, I put the idea of affective scaffolding to work. Using schizophrenia as a case study, I argue — along with others in phenomenological psychopathology — that schizophrenia is fundamentally a self-disturbance. However, I offer a subtle reconfiguration of these approaches. I argue that schizophrenia is not simply a disruption of ipseity or minimal self-consciousness but rather a disruption of the scaffolded self, established and regulated via its ongoing engagement with the world and others. I conclude that this way of thinking about the scaffolded self is potentially transformative both for our theoretical as well as practical understanding of the causes and character of schizophrenic experience, insofar as it suggests the need to consider new forms of intervention and treatment
    corecore