162 research outputs found

    An upper limit for macromolecular crowding effects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Solutions containing high macromolecule concentrations are predicted to affect a number of protein properties compared to those properties in dilute solution. In cells, these macromolecular crowders have a large range of sizes and can occupy 30% or more of the available volume. We chose to study the stability and ps-ns internal dynamics of a globular protein whose radius is ~2 nm when crowded by a synthetic microgel composed of poly(<it>N</it>-isopropylacrylamide-<it>co</it>-acrylic acid) with particle radii of ~300 nm.</p> <p>Results</p> <p>Our studies revealed no change in protein rotational or ps-ns backbone dynamics and only mild (~0.5 kcal/mol at 37°C, pH 5.4) stabilization at a volume occupancy of 70%, which approaches the occupancy of closely packing spheres. The lack of change in rotational dynamics indicates the absence of strong crowder-protein interactions.</p> <p>Conclusions</p> <p>Our observations are explained by the large size discrepancy between the protein and crowders and by the internal structure of the microgels, which provide interstitial spaces and internal pores where the protein can exist in a dilute solution-like environment. In summary, microgels that interact weakly with proteins do not strongly influence protein dynamics or stability because these large microgels constitute an upper size limit on crowding effects.</p

    Volume Exclusion and Soft Interaction Effects on Protein Stability under Crowded Conditions

    Get PDF
    Most proteins function in nature under crowded conditions, and crowding can change protein properties. Quantification of crowding effects, however, is difficult because solutions containing hundreds of grams per liter of macromolecules often interfere with observing the protein being studied. Models for macromolecular crowding tend to focus on the steric effects of crowders, neglecting potential chemical interactions between the crowder and the test protein. Here, we report the first systematic, quantitative, residue-level study of crowding effects on the equilibrium stability of a globular protein. We used a system comprising poly(vinylpyrrolidone)s (PVPs) of varying molecular weights as crowding agents and chymotrypsin inhibitor 2 (CI2) as a small globular test protein. Stability was quantified with NMR-detected amide 1H exchange. We analyze the data in terms of hard particle exclusion, confinement, and soft interactions. For all crowded conditions, nearly every observed residue experiences a stabilizing effect. The exceptions are residues where stabilities are unchanged. At a PVP concentration of 100 g/L, the data are consistent with theories of hard particle exclusion. At higher concentrations, the data are more consistent with confinement. The data show that the crowder also stabilizes the test protein by weakly binding its native state. We conclude that the role of native-state binding and other soft interactions need to be seriously considered when applying both theory and experiment to studies of macromolecular crowding

    Tardigrades Use Intrinsically Disordered Proteins to Survive Desiccation

    Get PDF
    Tardigrades are microscopic animals that survive a remarkable array of stresses, including desiccation. How tardigrades survive desiccation has remained a mystery for more than 250 years. Trehalose, a disaccharide essential for several organisms to survive drying, is detected at low levels or not at all in some tardigrade species, indicating that tardigrades possess potentially novel mechanisms for surviving desiccation. Here we show that tardigrade-specific intrinsically disordered proteins (TDPs) are essential for desiccation tolerance. TDP genes are constitutively expressed at high levels or induced during desiccation in multiple tardigrade species. TDPs are required for tardigrade desiccation tolerance, and these genes are sufficient to increase desiccation tolerance when expressed in heterologous systems. TDPs form non-crystalline amorphous solids (vitrify) upon desiccation, and this vitrified state mirrors their protective capabilities. Our study identifies TDPs as functional mediators of tardigrade desiccation tolerance, expanding our knowledge of the roles and diversity of disordered proteins involved in stress tolerance

    FlgM gains structure in living cells

    Get PDF
    Intrinsically disordered proteins such as FlgM play important roles in biology, but little is known about their structure in cells. We use NMR to show that FlgM gains structure inside living Escherichia coli cells and under physiologically relevant conditions in vitro, i.e., in solutions containing high concentrations (≥400 g/liter) of glucose, BSA, or ovalbumin. Structure formation represents solute-induced changes in the equilibrium between the structured and disordered forms of FlgM. The results provide insight into how the environment of intrinsically disordered proteins could dictate their structure and, in turn, emphasize the relevance of studying proteins in living cells and in vitro under physiologically realistic conditions

    Protein Nuclear Magnetic Resonance under Physiological Conditions †

    Get PDF
    Almost everything we know about protein biophysics comes from studies on purified proteins in dilute solution. Most proteins, however, operate inside cells where the concentration of macromolecules can be >300 mg per mL. Although reductionism-based approaches have served protein science well for over a century, biochemists now have the tools to study proteins under these more physiologically-relevant conditions. We review a part of this burgeoning post-reductionist landscape by focusing on high-resolution protein NMR spectroscopy, the only method that provides atomic-level information over an entire protein under the crowded conditions found in cells

    Kinetics of Proton Transport into Influenza Virions by the Viral M2 Channel

    Get PDF
    M2 protein of influenza A viruses is a tetrameric transmembrane proton channel, which has essential functions both early and late in the virus infectious cycle. Previous studies of proton transport by M2 have been limited to measurements outside the context of the virus particle. We have developed an in vitro fluorescence-based assay to monitor internal acidification of individual virions triggered to undergo membrane fusion. We show that rimantadine, an inhibitor of M2 proton conductance, blocks the acidification-dependent dissipation of fluorescence from a pH-sensitive virus-content probe. Fusion-pore formation usually follows internal acidification but does not require it. The rate of internal virion acidification increases with external proton concentration and saturates with a pKm of ∼4.7. The rate of proton transport through a single, fully protonated M2 channel is approximately 100 to 400 protons per second. The saturating proton-concentration dependence and the low rate of internal virion acidification derived from authentic virions support a transporter model for the mechanism of proton transfer

    In-Cell Biochemistry Using NMR Spectroscopy

    Get PDF
    Biochemistry and structural biology are undergoing a dramatic revolution. Until now, mostly in vitro techniques have been used to study subtle and complex biological processes under conditions usually remote from those existing in the cell. We developed a novel in-cell methodology to post-translationally modify interactor proteins and identify the amino acids that comprise the interaction surface of a target protein when bound to the post-translationally modified interactors. Modifying the interactor proteins causes structural changes that manifest themselves on the interacting surface of the target protein and these changes are monitored using in-cell NMR. We show how Ubiquitin interacts with phosphorylated and non-phosphorylated components of the receptor tyrosine kinase (RTK) endocytic sorting machinery: STAM2 (Signal-transducing adaptor molecule), Hrs (Hepatocyte growth factor regulated substrate) and the STAM2-Hrs heterodimer. Ubiquitin binding mediates the processivity of a large network of interactions required for proper functioning of the RTK sorting machinery. The results are consistent with a weakening of the network of interactions when the interactor proteins are phosphorylated. The methodology can be applied to any stable target molecule and may be extended to include other post-translational modifications such as ubiquitination or sumoylation, thus providing a long-awaited leap to high resolution in cell biochemistry

    Two Birds with One Stone? Possible Dual-Targeting H1N1 Inhibitors from Traditional Chinese Medicine

    Get PDF
    The H1N1 influenza pandemic of 2009 has claimed over 18,000 lives. During this pandemic, development of drug resistance further complicated efforts to control and treat the widespread illness. This research utilizes traditional Chinese medicine Database@Taiwan (TCM Database@Taiwan) to screen for compounds that simultaneously target H1 and N1 to overcome current difficulties with virus mutations. The top three candidates were de novo derivatives of xylopine and rosmaricine. Bioactivity of the de novo derivatives against N1 were validated by multiple machine learning prediction models. Ability of the de novo compounds to maintain CoMFA/CoMSIA contour and form key interactions implied bioactivity within H1 as well. Addition of a pyridinium fragment was critical to form stable interactions in H1 and N1 as supported by molecular dynamics (MD) simulation. Results from MD, hydrophobic interactions, and torsion angles are consistent and support the findings of docking. Multiple anchors and lack of binding to residues prone to mutation suggest that the TCM de novo derivatives may be resistant to drug resistance and are advantageous over conventional H1N1 treatments such as oseltamivir. These results suggest that the TCM de novo derivatives may be suitable candidates of dual-targeting drugs for influenza.National Science Council of Taiwan (NSC 99-2221-E-039-013-)Committee on Chinese Medicine and Pharmacy (CCMP100-RD-030)China Medical University and Asia University (CMU98-TCM)China Medical University and Asia University (CMU99-TCM)China Medical University and Asia University (CMU99-S-02)China Medical University and Asia University (CMU99-ASIA-25)China Medical University and Asia University (CMU99-ASIA-26)China Medical University and Asia University (CMU99-ASIA-27)China Medical University and Asia University (CMU99-ASIA-28)Taiwan Department of Health. Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004)Taiwan Department of Health. Cancer Research Center of Excellence (DOH100-TD-C-111-005

    Study on Phylogenetic Relationships, Variability, and Correlated Mutations in M2 Proteins of Influenza Virus A

    Get PDF
    M2 channel, an influenza virus transmembrane protein, serves as an important target for antiviral drug design. There are still discordances concerning the role of some residues involved in proton transfer as well as the mechanism of inhibition by commercial drugs. The viral M2 proteins show high conservativity; about 3/4 of the positions are occupied by one residue in over 95%. Nine M2 proteins from the H3N2 strain and possibly two proteins from H2N2 strains make a phylogenic cluster closely related to 2RLF. The variability range is limited to 4 residues/position with one exception. The 2RLF protein stands out by the presence of 2 serines at the positions 19 and 50, which are in most other M2 proteins occupied by cysteines. The study of correlated mutations shows that there are several positions with significant mutational correlation that have not been described so far as functionally important. That there are 5 more residues potentially involved in the M2 mechanism of action. The original software used in this work (Consensus Constructor, SSSSg, Corm, Talana) is freely accessible as stand-alone offline applications upon request to the authors. The other software used in this work is freely available online for noncommercial purposes at public services on bioinformatics such as ExPASy or NCBI. The study on mutational variability, evolutionary relationship, and correlated mutation presented in this paper is a potential way to explain more completely the role of significant factors in proton channel action and to clarify the inhibition mechanism by specific drugs

    Travel risk behaviours and uptake of pre-travel health preventions by university students in Australia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Forward planning and preventative measures before travelling can significantly reduce the risk of many vaccine preventable travel-related infectious diseases. Higher education students may be at an increased risk of importing infectious disease as many undertake multiple visits to regions with higher infectious disease endemicity. Little is known about the health behaviours of domestic or international university students, particularly students from low resource countries who travel to high-resource countries for education. This study aimed to assess travel-associated health risks and preventative behaviours in a sample of both domestic and international university students in Australia.</p> <p>Methods</p> <p>In 2010, a 28 item self-administered online survey was distributed to students enrolled at the University of New South Wales, Sydney, Australia. Multiple methods of distributing links to the online survey were utilised. The survey examined the international travel history, travel intentions, infection control behaviours and self-reported vaccination history.</p> <p>Results</p> <p>A total of 1663 respondents completed the online survey, 22.1% were international students and 83.9% were enrolled at an undergraduate level. Half had travelled internationally in the previous 12 months, with 69% of those travelling only once during that time with no difference in travel from Australia between domestic and international students (<it>p </it>= 0.8). Uptake of pre-travel health advice was low overall with 68% of respondents reporting they had not sought any advice from a health professional prior to their last international trip. Domestic students were more likely to report uptake of a range of preventative travel health measures compared to international students, including diarrhoeal medication, insect repellent, food avoidance and condoms (<it>P </it>< 0.0001). Overall, students reported low risk perception of travel threats and a low corresponding concern for these threats.</p> <p>Conclusions</p> <p>Our study highlights the need to educate students about the risk associated with travel and improve preventative health-seeking and uptake of precautionary health measures in this highly mobile young adult population. Although immunisation is not an entry requirement to study at Universities in Australia, large tertiary institutions provide an opportunity to engage with young adults on the importance of travel health and provision of vaccines required for travel, including missed childhood vaccines.</p
    corecore