35 research outputs found

    Catalyst composition and impurity-dependent kinetics of nanowire heteroepitaxy.

    Get PDF
    The mechanisms and kinetics of axial Ge-Si nanowire heteroepitaxial growth based on the tailoring of the Au catalyst composition via Ga alloying are studied by environmental transmission electron microscopy combined with systematic ex situ CVD calibrations. The morphology of the Ge-Si heterojunction, in particular, the extent of a local, asymmetric increase in nanowire diameter, is found to depend on the Ga composition of the catalyst, on the TMGa precursor exposure temperature, and on the presence of dopants. To rationalize the findings, a general nucleation-based model for nanowire heteroepitaxy is established which is anticipated to be relevant to a wide range of material systems and device-enabling heterostructures.S.H. acknowledges funding from ERC grant InsituNANO (No. 279342). A.D.G. acknowledges funding from the Marshall Aid Commemoration Commission and the National Science Foundation. C.D. acknowledges funding from the Royal Society. A portion of the research was also performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s (DOE) Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated by Battelle for the U.S. DOE under Contract DE-AC05-76RL01830. We gratefully acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. This work was performed in part at CINT, a U.S. DOE, Office of Science User Facility. The research was funded in part by the Laboratory Directed Research and Development Program at LANL, an affirmative action equal opportunity employer operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the U.S. DOE under Contract DE-AC52-06NA25396.This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/nn402208p. Gamalski AD, Perea DE, Yoo J, Li N, Olszta MJ, Colby R, Schreiber DK, Ducati C, Picraux ST, Hofmann S, ACS Nano 2013, 7 (9), 7689–7697, doi:10.1021/nn402208

    Enhanced Lithium Ion Battery Cycling of Silicon Nanowire Anodes by Template Growth to Eliminate Silicon Underlayer Islands

    No full text
    It is well-known that one-dimensional nanostructures reduce pulverization of silicon (Si)-based anode materials during Li ion cycling because they allow lateral relaxation. However, even with improved designs, Si nanowire-based structures still exhibit limited cycling stability for extended numbers of cycles, with the specific capacity retention with cycling not showing significant improvements over commercial carbon-based anode materials. We have found that one important reason for the lack of long cycling stability can be the presence of milli- and microscale Si islands which typically form under nanowire arrays during their growth. Stress buildup in these Si island underlayers with cycling results in cracking, and the loss of specific capacity for Si nanowire anodes, due to progressive loss of contact with current collectors. We show that the formation of these parasitic Si islands for Si nanowires grown directly on metal current collectors can be avoided by growth through anodized aluminum oxide templates containing a high density of sub-100 nm nanopores. Using this template approach we demonstrate significantly enhanced cycling stability for Si nanowire-based lithium-ion battery anodes, with retentions of more than ∼1000 mA·h/g discharge capacity over 1100 cycles

    Silicon Nanowire Degradation and Stabilization during Lithium Cycling by SEI Layer Formation

    No full text
    Silicon anodes are of great interest for advanced lithium-ion battery applications due to their order of magnitude higher energy capacity than graphite. Below a critical diameter, silicon nanowires enable the ∼300% volume expansion during lithiation without pulverization. However, their high surface-to-volume ratio is believed to contribute to fading of their capacity retention during cycling due to solid-electrolyte-interphase (SEI) growth on surfaces. To better understand this issue, previous studies have examined the composition and morphology of the SEI layers. Here we report direct measurements of the reduction in silicon nanowire diameter with number of cycles due to SEI formation. The results reveal significantly greater Si loss near the nanowire base. From the change in silicon volume we can accurately predict the measured specific capacity reduction for silicon nanowire half cells. The enhanced Si loss near the nanowire/metal current collector interface suggests new strategies for stabilizing nanowires for long cycle life performance

    Introduction

    No full text

    Ultrashort Channel Silicon Nanowire Transistors with Nickel Silicide Source/Drain Contacts

    No full text
    We demonstrate the shortest transistor channel length (17 nm) fabricated on a vapor–liquid–solid (VLS) grown silicon nanowire (NW) by a controlled reaction with Ni leads on an in situ transmission electron microscope (TEM) heating stage at a moderate temperature of 400 °C. NiSi<sub>2</sub> is the leading phase, and the silicide–silicon interface is an atomically sharp type-A interface. At such channel lengths, high maximum on-currents of 890 (μA/μm) and a maximum transconductance of 430 (μS/μm) were obtained, which pushes forward the performance of bottom-up Si NW Schottky barrier field-effect transistors (SB-FETs). Through accurate control over the silicidation reaction, we provide a systematic study of channel length dependent carrier transport in a large number of SB-FETs with channel lengths in the range of 17 nm to 3.6 μm. Our device results corroborate with our transport simulations and reveal a characteristic type of short channel effects in SB-FETs, both in on- and off-state, which is different from that in conventional MOSFETs, and that limits transport parameter extraction from SB-FETs using conventional field-effect transconductance measurements

    Size-Dependent Silicon Epitaxy at Mesoscale Dimensions

    No full text
    New discoveries on collective processes in materials fabrication and performance are emerging in the mesoscopic size regime between the nanoscale, where atomistic effects dominate, and the macroscale, where bulk-like behavior rules. For semiconductor electronics and photonics, dimensional control of the architecture in this regime is the limiting factor for device performance. Epitaxial crystal growth is the major tool enabling simultaneous control of the dimensions and properties of such architectures. Although size-dependent effects have been studied for many small-scale systems, they have not been reported for the epitaxial growth of Si crystalline surfaces. Here, we show a strong dependence of epitaxial growth rates on size for nano to microscale radial wires and planar stripes. A model for this unexpected size-dependent vapor phase epitaxy behavior at small dimensions suggests that these effects are universal and result from an enhanced surface desorption of the silane (SiH<sub>4</sub>) growth precursor near facet edges. Introducing phosphorus or boron dopants during the silicon epitaxy further decreases the growth rates and, for phosphorus, gives rise to a critical layer thickness for single crystalline epitaxial growth. This previously unknown mesoscopic size-dependent growth effect at mesoscopic dimensions points to a new mechanism in vapor phase growth and promises greater control of advanced device geometries

    Gold Catalyzed Nickel Disilicide Formation: A New Solid–Liquid–Solid Phase Growth Mechanism

    No full text
    The vapor–liquid–solid (VLS) mechanism is the predominate growth mechanism for semiconductor nanowires (NWs). We report here a new solid–liquid–solid (SLS) growth mechanism of a silicide phase in Si NWs using in situ transmission electron microcopy (TEM). The new SLS mechanism is analogous to the VLS one in relying on a liquid-mediating growth seed, but it is fundamentally different in terms of nucleation and mass transport. In SLS growth of Ni disilicide, the Ni atoms are supplied from remote Ni particles by interstitial diffusion through a Si NW to the pre-existing Au–Si liquid alloy drop at the tip of the NW. Upon supersaturation of both Ni and Si in Au, an octahedral nucleus of Ni disilicide (NiSi<sub>2</sub>) forms at the center of the Au liquid alloy, which thereafter sweeps through the Si NW and transforms Si into NiSi<sub>2</sub>. The dissolution of Si by the Au alloy liquid mediating layer proceeds with contact angle oscillation at the triple point where Si, oxide of Si, and the Au alloy meet, whereas NiSi<sub>2</sub> is grown from the liquid mediating layer in an atomic stepwise manner. By using in situ quenching experiments, we are able to measure the solubility of Ni and Si in the Au–Ni–Si ternary alloy. The Au-catalyzed mechanism can lower the formation temperature of NiSi<sub>2</sub> by 100 °C compared with an all solid state reaction
    corecore