133 research outputs found
Direct evidence to support the restriction of intramolecular rotation hypothesis for the mechanism of aggregation-induced emission: Temperature resolved terahertz spectra of tetraphenylethene
In contrast to the traditional fluorescent dyes that exhibit a decrease in fluorescence upon aggregation, Aggregation-Induced Emission (AIE) molecules are a family of fluorophors which exhibit increased fluorescence upon aggregation. Consequently, AIE molecules represent an interesting new material with potential applications in fluorescent chemo/biosensors, light emitting devices and medical diagnostics. Numerous mechanisms have been proposed to explain this phenomenon, including isomerisation, and restriction of intramolecular rotations (RIR). However, there has not been any direct experimental evidence to support either one of these hypotheses. Here we use terahertz time-domain-spectroscopy (THz-TDS) and solid-state computational simulations of an AIE molecule to link the increase in intensity of intramolecular rotation and rocking modes to the measured fluorescence and reveal direct evidence supporting the RIR hypothesis. This is the first time that terahertz spectroscopy has been used to directly probe such molecular motions in AIE materials and in doing so we have found conclusive evidence to fully explain the AIE mechanism.This is the accepted version of an article first published in Materials Horizons. The version of record is available from the Royal Society of Chemistry at http://xlink.rsc.org/?DOI=c3mh00078
Recommended from our members
Between dry rocks and a hard place: detecting ecological responses to human impacts in stream communities altered by natural drying
Terahertz pulsed imaging of freshly excised human colonic tissues
We present the results from a feasibility study which measures properties in the terahertz frequency range of excised cancerous, dysplastic and healthy colonic tissues from 30 patients. We compare their absorption and refractive index spectra to identify trends which may enable different tissue types to be distinguished. In addition, we present statistical models based on variations between up to 17 parameters calculated from the reflected time and frequency domain signals of all the measured tissues. These models produce a sensitivity of 82% and a specificity of 77% in distinguishing between healthy and all diseased tissues and a sensitivity of 89% and a specificity of 71% in distinguishing between dysplastic and healthy tissues. The contrast between the tissue types was supported by histological staining studies which showed an increased vascularity in regions of increased terahertz absorption
Design and fabrication of 3-D printed conductive polymer structures for THz polarization control
In this paper, we numerically and experimentally demonstrate the inverse polarization effect in three-dimensional (3-D) printed polarizers for the frequency range of 0.5 - 2.7 THz. The polarizers simply consist of 3-D printed strip lines of conductive polylactic acid (CPLA, Proto-Pasta) and do not require a substrate or any further metallic deposition. The experimental and numerical results show that the proposed structure acts as a broadband polarizer between the range of 0.3 THz to 2.7 THz, in which the inverse polarization effect is clearly seen for frequencies above 0.5 THz. In the inverse polarization effect, the transmission of the transverse electric (TE) component exceeds that of the TM component, in contrast to the behavior of a typical wire-grid polarizer. We show how the performance of the polarizers depends on the spacing and thickness of the CPLA structure; extinction ratios higher than 20 dB are achieved. This is the first report using CPLA to fabricate THz polarizers, demonstrating the potential of using conductive polymers to design THz components efficiently and robustly
Electrically tunable Si-based THz photomodulator using dielectric/polymer surface gating
Silicon-based terahertz (THz) photomodulators suffer from a modulation speed limited by the lifetime of the charge carriers photoexcited in the silicon. We report a silicon-based THz photomodulator scheme offering real-time reconfiguration of the switching behavior by manipulation of effective charge carrier lifetime. Atomic layer deposition was used to coat silicon samples with dielectric layers to passivate the surfaces with a conductive polymer (PEDOT:PSS) subsequently deposited to enable electrical gating over the whole surface. The resulting gated photomodulators are characterized using photoconductance decay and photoluminescence imaging. A gated photomodulator with HfO2 passivation is then implemented into a THz time domain spectroscopy setup to demonstrate the potential for live photomodulation optimization during a single-pixel imaging experiment. We use the device to achieve a real-time improvement of the signal-to-noise ratio of the images by a factor of 8
Real time THz imaging - opportunities and challenges for skin cancer detection
It was first suggested that terahertz imaging has the potential to detect skin cancer twenty years ago. Since then, THz instrumentation has improved significantly: real time broadband THz imaging is now possible and robust protocols for measuring living subjects have been developed. Here, we discuss the progress that has been made as well as highlight the remaining challenges for applying THz imaging to skin cancer detection
Prospects for terahertz imaging the human skin cancer with the help of gold-nanoparticles-based terahertz-to-infrared converter
The design is suggested, and possible operation parameters are discussed, of
an instrument to inspect a skin cancer tumour in the terahertz (THz) range,
transferring the image into the infrared (IR) and making it visible with the
help of standard IR camera. The central element of the device is the THz-to-IR
converter, a Teflon or silicon film matrix with embedded 8.5 nm diameter gold
nanoparticles. The use of external THz source for irradiating the biological
tissue sample is presumed. The converter's temporal characteristics enable its
performance in a real-time scale. The details of design suited for the
operation in transmission mode (in vitro) or on the human skin in reflection
mode {in vivo) are specified.Comment: To be published in the proceedings of the FANEM2018 workshop - Minsk,
3-5 June 201
Understanding historical coastal spit evolution : a case study from Spurn, East Yorkshire, UK
Globally sandy coastlines are threatened by erosion driven by climatic changes and increased storminess. Understanding how they have responded to past storms is key to help manage future coastal changes. Coastal spits around the world are particularly dynamic and therefore potentially vulnerable coastal features. Therefore, how they have evolved over the last few centuries is of great importance. To illustrate this, this study focuses on the historical evolution of a spit at Spurn on the east coast of the UK, which currently provides critical protection to settlements within the Humber estuary. Through the combination of digitized historical mapping and luminescence dating, this study shows that Spurn has been a consistent coastal feature over at least the past 440 years. No significant westward migration was observed for the last 200 years. Results show a long‐term extension of the spit and a decrease in its overall area, particularly in the last 50 years. Breaches of the neck cause temporary sediment pathway changes enabling westward extension of the head. Use of digitized historical maps in GIS combined with OSL dating has allowed a more complete understanding of long‐term spit evolution and sediment transport modes at Spurn. In doing so it helps inform future possible changes linked to pressures, such as increases in storm events and sea‐level rise
Evaluation of lightweight fibreglass heel casts in the management of ulcers of the heel in diabetes: study protocol for a randomised controlled trial
BackgroundUlcers of the heel in diabetes are the source of considerable suffering and cost. In the absence of specific treatments, it has been suggested that removable, lightweight fibreglass heel casts may both promote healing and reduce discomfort and pain. The aim of the study is to assess the effectiveness and cost-effectiveness of fibreglass heel casts in the management of heel ulcers.Methods/DesignThis is an observer-blind, randomised controlled trial in which participants with diabetes and heel ulcers (NPUAP/EPUAP grades 2, 3 or 4 and present for 2 or more weeks) are randomised to receive either usual care plus lightweight fibreglass heel casts or usual care alone. Randomisation is undertaken by random number sequence generation incorporated as part of the electronic case record form, and is stratified by both ulcer area (less than versus equal to or greater than 1 cm2) and NPUAP/EPUAP grade. Participants are followed every two weeks until healing or for 24 weeks. The primary outcome measure is healing at or before 24 weeks and maintained for 4 weeks. Secondary outcomes include (i) ulcer-related outcomes: time to healing, change in ulcer area, minor and major amputation, secondary infection and (ii) patient-related outcomes: local pain, mood and function (EQ-5D), impact of the ulcer (Cardiff Wound Impact Schedule) and survival. Cost-effectiveness will be assessed using a decision analytic model to estimate costs from the perspective of the UK NHS and personal social services and health outcomes, including percent healing and Quality Adjusted Life Years gained.Safety will be documented as adverse and serious adverse device effects.DiscussionIf it is possible to confirm significant clinical benefit and/or cost-effectiveness, this would have direct implications for the management of this distressing and costly complication of diabete
- …