120 research outputs found

    Bulk experimental evidence of half-metallic ferromagnetism in doped manganites

    Full text link
    We report precise measurements and quantitative data analysis on the low-temperature resistivity of several ferromagnetic manganite films. We clearly show that there exists a T^{4.5} term in low-temperature resistivity, and that this term is in quantitative agreement with the quantum theory of two-magnon scattering for half metallic ferromagnets. Our present results provide the first bulk experimental evidence of half-metallic ferromagnetism in doped manganites.Comment: 4 pages, 4 figure

    Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach

    Full text link
    We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including the first fully three-dimensional electronic band structures calculated by the method.Comment: replacement: single spaced, included figures, added journal referenc

    Nonlinear ion-acoustic (IA) waves driven in a cylindrically symmetric flow

    Full text link
    By employing a self-similar, two-fluid MHD model in a cylindrical geometry, we study the features of nonlinear ion-acoustic (IA) waves which propagate in the direction of external magnetic field lines in space plasmas. Numerical calculations not only expose the well-known three shapes of nonlinear structures (sinusoidal, sawtooth, and spiky or bipolar) which are observed by numerous satellites and simulated by models in a Cartesian geometry, but also illustrate new results, such as, two reversely propagating nonlinear waves, density dips and humps, diverging and converging electric shocks, etc. A case study on Cluster satellite data is also introduced.Comment: accepted by AS

    Coupling between planes and chains in YBa2Cu3O7 : a possible solution for the order parameter controversy

    Full text link
    We propose to explain the contradictory experimental evidence about the symmetry of the order parameter in YBa2Cu3O7YBa_{2}Cu_{3}O_{7} by taking into account the coupling between planes and chains. This leads to an anticrossing of the plane and chain band. We include an attractive pairing interaction within the planes and a repulsive one between planes and chains, leading to opposite signs for the order parameter on planes and chains, and to nodes of the gap because of the anticrossing. Our model blends s-wave and d-wave features, and provides a natural explanation for all the contradictory experimentsComment: 13 pages, revtex, 2 uucoded figure

    Ultrasound attenuation in gap-anisotropic systems

    Get PDF
    Transverse ultrasound attenuation provides a weakly-coupled probe of momentum current correlations in electronic systems. We develop a simple theory for the interpretation of transverse ultrasound attenuation coefficients in systems with nodal gap anisotropy. Applying this theory we show how ultrasound can delineate between extended-s and d-wave scenarios for the cuprate superconductors.Comment: Uuencode file: 4 pages (Revtex), 3 figures. Some references adde

    Influence of next-nearest-neighbor electron hopping on the static and dynamical properties of the 2D Hubbard model

    Full text link
    Comparing experimental data for high temperature cuprate superconductors with numerical results for electronic models, it is becoming apparent that a hopping along the plaquette diagonals has to be included to obtain a quantitative agreement. According to recent estimations the value of the diagonal hopping t′t' appears to be material dependent. However, the values for t′t' discussed in the literature were obtained comparing theoretical results in the weak coupling limit with experimental photoemission data and band structure calculations. The goal of this paper is to study how t′t' gets renormalized as the interaction between electrons, UU, increases. For this purpose, the effect of adding a bare diagonal hopping t′t' to the fully interacting two dimensional Hubbard model Hamiltonian is investigated using numerical techniques. Positive and negative values of t′t' are analyzed. Spin-spin correlations, n(k)n(\bf{k}), ⟨n⟩\langle n\rangle vs μ\mu, and local magnetic moments are studied for values of U/tU/t ranging from 0 to 6, and as a function of the electronic density. The influence of the diagonal hopping in the spectral function A(k,ω)A(\bf{k},\omega) is also discussed, and the changes in the gap present in the density of states at half-filling are studied. We introduce a new criterion to determine probable locations of Fermi surfaces at zero temperature from n(k)n(\bf{k}) data obtained at finite temperature. It appears that hole pockets at k=(π/2,π/2){\bf{k}}=(\pi/2,\pi/2) may be induced for negative t′t' while a positive t′t' produces similar features at k=(π,0){\bf{k}}=(\pi,0) and (0,π)(0,\pi). Comparisons with the standard 2D Hubbard (t′=0t'=0) model indicate that a negative t′t' hopping amplitude appears to be dynamically generated. In general, we conclude that it is very dangerous to extract a bare parameter of the Hamiltonian (t′)(t') from PES data whereComment: 9 pages (RevTex 3.0), 12 figures (postscript), files packed with uufile

    Palaeontology, the biogeohistory of Victoria

    Full text link
    The broad-scale distribution of fossils within Victoria is controlled by general global patterns in the biological evolution of life on Earth, the local development and environmental evolution of habitats, and the occurrence of geological processes conducive to the preservation of fossil floras and faunas. Early Palaeozoic fossils are mostly marine in origin because of the predominance of marine sedimentary rocks in Victoria and because life on land was not significant during most of this time interval. Middle Palaeozoic sequences have both terrestrial and marine fossil records. Within Victoria, marine rocks are only very minor components of strata deposited during the late Palaeozoic, so that few marine fossils are known from this time period. A similar situation existed during most of the Mesozoic except towards the end of this era when marine conditions began to prevail in the Bass Strait region. During long intervals in the Cainozoic, large areas of Victoria were flooded by shallow-marine seas, particularly in the southern basins of Bass Strait, as well as in the northwest of the State (Murray Basin). Cainozoic sediments contain an extraordinary range of animal and plant fossils. During the Quaternary, the landscape of Victoria became, and continues to be, dominated by continental environments including, at times, extensive freshwater lake systems. Fossil floras and faunas from sediments deposited in these lake systems and from other continental sediments, as well as from Quaternary sediments deposited in marginal marine environments, collectively record a history of rapid fluctuations in climate and sea level.<br /

    Schottky barrier heights at polar metal/semiconductor interfaces

    Full text link
    Using a first-principle pseudopotential approach, we have investigated the Schottky barrier heights of abrupt Al/Ge, Al/GaAs, Al/AlAs, and Al/ZnSe (100) junctions, and their dependence on the semiconductor chemical composition and surface termination. A model based on linear-response theory is developed, which provides a simple, yet accurate description of the barrier-height variations with the chemical composition of the semiconductor. The larger barrier values found for the anion- than for the cation-terminated surfaces are explained in terms of the screened charge of the polar semiconductor surface and its image charge at the metal surface. Atomic scale computations show how the classical image charge concept, valid for charges placed at large distances from the metal, extends to distances shorter than the decay length of the metal-induced-gap states.Comment: REVTeX 4, 11 pages, 6 EPS figure
    • …
    corecore