628 research outputs found

    The influence of winter water on phytoplankton blooms in the Chukchi Sea

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 118 (2015): 53-72, doi:10.1016/j.dsr2.2015.06.006.The flow of nutrient-rich winter water (WW) through the Chukchi Sea plays an important and previously uncharacterized role in sustaining summer phytoplankton blooms. Using hydrographic and biogeochemical data collected as part of the ICESCAPE program (June-July 2010-11), we examined phytoplankton bloom dynamics in relation to the distribution and circulation of WW (defined as water with potential temperature ≤ -1.6°C) across the Chukchi shelf. Characterized by high concentrations of nitrate (mean: 12.3 ± 5.13 μmol L-1) that typically limits primary production in this region, WW was correlated with extremely high phytoplankton biomass, with mean chlorophyll a concentrations that were three-fold higher in WW (8.64 ± 9.75 μg L-1) than in adjacent warmer water (2.79 ± 5.58 μg L-1). Maximum chlorophyll a concentrations (~30 μg L-1) were typically positioned at the interface between nutrient-rich WW and shallower, warmer water with more light availability. Comparing satellite-based calculations of open water duration to phytoplankton biomass, nutrient concentrations, and oxygen saturation revealed widespread evidence of under-ice blooms prior to our sampling, with biogeochemical properties indicating that blooms had already terminated in many places where WW was no longer present. Our results suggest that summer phytoplankton blooms are sustained for a longer duration along the pathways of nutrient-rich WW and that biological hotspots in this region (e.g. the mouth of Barrow Canyon) are largely driven by the flow and confluence of these extremely productive pathways of WW that flow across the Chukchi shelf.This material is based upon work supported by the National Aeronautic and Space Administration (NASA) under Grant No. NNX10AF42G and the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0645962 to K.E. Lowry

    A Conditional Yeast E1 Mutant Blocks the Ubiquitin–Proteasome Pathway and Reveals a Role for Ubiquitin Conjugates in Targeting Rad23 to the Proteasome

    Get PDF
    E1 ubiquitin activating enzyme catalyzes the initial step in all ubiquitin-dependent processes. We report the isolation of uba1-204, a temperature-sensitive allele of the essential Saccharomyces cerevisiae E1 gene, UBA1. Uba1-204 cells exhibit dramatic inhibition of the ubiquitin–proteasome system, resulting in rapid depletion of cellular ubiquitin conjugates and stabilization of multiple substrates. We have employed the tight phenotype of this mutant to investigate the role ubiquitin conjugates play in the dynamic interaction of the UbL/UBA adaptor proteins Rad23 and Dsk2 with the proteasome. Although proteasomes purified from mutant cells are intact and proteolytically active, they are depleted of ubiquitin conjugates, Rad23, and Dsk2. Binding of Rad23 to these proteasomes in vitro is enhanced by addition of either free or substrate-linked ubiquitin chains. Moreover, association of Rad23 with proteasomes in mutant and wild-type cells is improved upon stabilizing ubiquitin conjugates with proteasome inhibitor. We propose that recognition of polyubiquitin chains by Rad23 promotes its shuttling to the proteasome in vivo

    Toward Improved Observing of the Rapidly Changing Arctic Ocean

    Get PDF
    Arctic Observing Summit (April 30 – May 2, 2013, Vancouver, Canada); AON statementIn order to observe and understand the Arctic Ocean and its response to climate change, the traditional approach of acquiring observations when and where the Arctic is accessible has to be enhanced with multi-faceted measurement systems operating autonomously to provide year-round information in real time. The major goal of such a network of autonomous sensors is to measure and monitor physical, chemical and biological parameters in the atmosphere, sea ice and ocean on at least daily intervals

    Under-ice phytoplankton blooms inhibited by spring convective mixing in refreezing leads

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 90–109, doi:10.1002/2016JC012575.Spring phytoplankton growth in polar marine ecosystems is limited by light availability beneath ice-covered waters, particularly early in the season prior to snowmelt and melt pond formation. Leads of open water increase light transmission to the ice-covered ocean and are sites of air-sea exchange. We explore the role of leads in controlling phytoplankton bloom dynamics within the sea ice zone of the Arctic Ocean. Data are presented from spring measurements in the Chukchi Sea during the Study of Under-ice Blooms In the Chukchi Ecosystem (SUBICE) program in May and June 2014. We observed that fully consolidated sea ice supported modest under-ice blooms, while waters beneath sea ice with leads had significantly lower phytoplankton biomass, despite high nutrient availability. Through an analysis of hydrographic and biological properties, we attribute this counterintuitive finding to springtime convective mixing in refreezing leads of open water. Our results demonstrate that waters beneath loosely consolidated sea ice (84–95% ice concentration) had weak stratification and were frequently mixed below the critical depth (the depth at which depth-integrated production balances depth-integrated respiration). These findings are supported by theoretical model calculations of under-ice light, primary production, and critical depth at varied lead fractions. The model demonstrates that under-ice blooms can form even beneath snow-covered sea ice in the absence of mixing but not in more deeply mixed waters beneath sea ice with refreezing leads. Future estimates of primary production should account for these phytoplankton dynamics in ice-covered waters.National Science Foundation (NSF) Grant Numbers: PLR-1304563 , PLR-1303617; KEL; NSF Graduate Research Fellowship Program Grant Number: DGE-06459622018-07-0

    Understanding the Role of the Josephin Domain in the PolyUb Binding and Cleavage Properties of Ataxin-3

    Get PDF
    Ataxin-3, the disease protein in the neurodegenerative disorder Spinocerebellar Ataxia Type 3 or Machado Joseph disease, is a cysteine protease implicated in the ubiquitin proteasome pathway. It contains multiple ubiquitin binding sites through which it anchors polyubiquitin chains of different linkages that are then cleaved by the N-terminal catalytic (Josephin) domain. The properties of the ubiquitin interacting motifs (UIMs) in the C-terminus of ataxin-3 are well established. Very little is known, however, about how two recently identified ubiquitin-binding sites in the Josephin domain contribute to ubiquitin chain binding and cleavage. In the current study, we sought to define the specific contribution of the Josephin domain to the catalytic properties of ataxin-3 and assess how the topology and affinity of these binding sites modulate ataxin-3 activity. Using NMR we modeled the structure of diUb/Josephin complexes and showed that linkage preferences are imposed by the topology of the two binding sites. Enzymatic studies further helped us to determine a precise hierarchy between the sites. We establish that the structure of Josephin dictates specificity for K48-linked chains. Site 1, which is close to the active site, is indispensable for cleavage. Our studies open the way to understand better the cellular function of ataxin-3 and its link to pathology

    Eddies in the Canada Basin, Arctic Ocean, observed from ice-tethered profilers

    Get PDF
    Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 133–145, doi:10.1175/2007JPO3782.1.Five ice-tethered profilers (ITPs), deployed between 2004 and 2006, have provided detailed potential temperature θ and salinity S profiles from 21 anticyclonic eddy encounters in the central Canada Basin of the Arctic Ocean. The 12–35-m-thick eddies have center depths between 42 and 69 m in the Arctic halocline, and are shallower and less dense than the majority of eddies observed previously in the central Canada Basin. They are characterized by anomalously cold θ and low stratification, and have horizontal scales on the order of, or less than, the Rossby radius of deformation (about 10 km). Maximum azimuthal speeds estimated from dynamic heights (assuming cyclogeostrophic balance) are between 9 and 26 cm s−1, an order of magnitude larger than typical ambient flow speeds in the central basin. Eddy θ–S and potential vorticity properties, as well as horizontal and vertical scales, are consistent with their formation by instability of a surface front at about 80°N that appears in historical CTD and expendable CTD (XCTD) measurements. This would suggest eddy lifetimes longer than 6 months. While the baroclinic instability of boundary currents cannot be ruled out as a generation mechanism, it is less likely since deeper eddies that would originate from the deeper-reaching boundary flows are not observed in the survey region.The engineering design work for the ITP was initiated by the Cecil H. and Ida M. Green Technology Innovation Program (an internal program at the Woods Hole Oceanographic Institution). Prototype development and construction were funded jointly by the U.S. National Science Foundation (NSF) Oceanographic Technology and Interdisciplinary Coordination Program and Office of Polar Programs (OPP) under Award OCE-0324233. Continued support has been provided by the OPP Arctic Sciences Section under Award ARC-0519899 and internal WHOI funding

    Trim17, novel E3 ubiquitin-ligase, initiates neuronal apoptosis

    Get PDF
    Accumulating data indicate that the ubiquitin-proteasome system controls apoptosis by regulating the level and the function of key regulatory proteins. In this study, we identified Trim17, a member of the TRIM/RBCC protein family, as one of the critical E3 ubiquitin ligases involved in the control of neuronal apoptosis upstream of mitochondria. We show that expression of Trim17 is increased both at the mRNA and protein level in several in vitro models of transcription-dependent neuronal apoptosis. Expression of Trim17 is controlled by the PI3K/Akt/GSK3 pathway in cerebellar granule neurons (CGN). Moreover, the Trim17 protein is expressed in vivo, in apoptotic neurons that naturally die during post-natal cerebellar development. Overexpression of active Trim17 in primary CGN was sufficient to induce the intrinsic pathway of apoptosis in survival conditions. This pro-apoptotic effect was abolished in Bax(-/-) neurons and depended on the E3 activity of Trim17 conferred by its RING domain. Furthermore, knock-down of endogenous Trim17 and overexpression of dominant-negative mutants of Trim17 blocked trophic factor withdrawal-induced apoptosis both in CGN and in sympathetic neurons. Collectively, our data are the first to assign a cellular function to Trim17 by showing that its E3 activity is both necessary and sufficient for the initiation of neuronal apoptosis. Cell Death and Differentiation (2010) 17, 1928-1941; doi: 10.1038/cdd.2010.73; published online 18 June 201

    Generalized calculation of magnetic coupling constants for Mott-Hubbard insulators: Application to ferromagnetic Cr compounds

    Full text link
    Using a Rayleigh-Schr\"odinger perturbation expansion of multi-band Hubbard models, we present analytic expressions for the super-exchange coupling constants between magnetic transition metal ions of arbitrary separation in Mott-Hubbard insulators. The only restrictions are i) all ligand ions are closed shell anions and ii) all contributing interaction paths are of equal length. For short paths, our results essentially confirm the Goodenough-Kanamori-Anderson rules, yet in general there does not exist any simple rule to predict the sign of the magnetic coupling constants. The most favorable situation for ferromagnetic coupling is found for ions with less than half filled d shells, the (relative) tendency to ferromagnetic coupling increases with increasing path length. As an application, the magnetic interactions of the Cr compounds Rb2_2CrCl4_4, CrCl3_3, CrBr3_3 and CrI3_3 are investigated, all of which except CrCl3_3 are ferromagnets.Comment: 13 pages, 6 eps figures, submitted to Phys Rev

    Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4

    Get PDF
    The small ubiquitin-like modifier (SUMO) can form polymeric chains that are important signals in cellular processes such as meiosis, genome maintenance and stress response. The SUMO-targeted ubiquitin ligase RNF4 engages with SUMO chains on linked substrates and catalyses their ubiquitination, which targets substrates for proteasomal degradation. Here we use a segmental labelling approach combined with solution nuclear magnetic resonance (NMR) spectroscopy and biochemical characterization to reveal how RNF4 manipulates the conformation of the SUMO chain, thereby facilitating optimal delivery of the distal SUMO domain for ubiquitin transfer
    • …
    corecore