1,470 research outputs found

    RADIOCARBON AND STABLE ISOTOPE EVIDENCE OF DIETARY CHANGE FROM THE MESOLITHIC TO THE MIDDLE AGES IN THE IRON GATES: NEW RESULTS FROM LEPENSKI VIR

    Get PDF
    This is the published version, also available here: https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/4269.A previous radiocarbon dating and stable isotope study of directly associated ungulate and human bone samples from Late Mesolithic burials at Schela Cladovei in Romania established that there is a freshwater reservoir effect of approximately 500 yr in the Iron Gates reach of the Danube River valley in southeast Europe. Using the d15N values as an indicator of the percentage of freshwater protein in the human diet, the 14C data for 24 skeletons from the site of Lepenski Vir were corrected for this reservoir effect. The results of the paired 14C and stable isotope measurements provide evidence of substantial dietary change over the period from about 9000 BP to about 300 BP. The data from the Early Mesolithic to the Chalcolithic are consistent with a 2-component dietary system, where the linear plot of isotopic values reflects mixing between the 2 end-members to differing degrees. Typically, the individuals of Mesolithic age have much heavier d15N signals and slightly heavier d13C, while individuals of Early Neolithic and Chalcolithic age have lighter d15N and d13C values. Contrary to our earlier suggestion, there is no evidence of a substantial population that had a transitional diet midway between those that were characteristic of the Mesolithic and Neolithic. However, several individuals with Final Mesolithic 14C ages show d15N and d13C values that are similar to the Neolithic dietary pattern. Provisionally, these are interpreted either as incomers who originated in early farming communities outside the Iron Gates region or as indigenous individuals representing the earliest Neolithic of the Iron Gates. The results from Roman and Medieval age burials show a deviation from the linear function, suggesting the presence of a new major dietary component containing isotopically heavier carbon. This is interpreted as a consequence of the introduction of millet into the human food chain

    Circadian Behavioral Responses to Light and Optic Chiasm-Evoked Glutamatergic EPSCs in the Suprachiasmatic Nucleus of ipRGC Conditional vGlut2 Knock-Out Mice

    Get PDF
    Intrinsically photosensitive retinal ganglion cells (ipRGCs) innervate the hypothalamic suprachiasmatic nucleus (SCN), a circadian oscillator that functions as a biological clock. ipRGCs use vesicular glutamate transporter 2 (vGlut2) to package glutamate into synaptic vesicles and light-evoked resetting of the SCN circadian clock is widely attributed to ipRGC glutamatergic neurotransmission. Pituitary adenylate cyclase-activating polypeptide (PACAP) is also packaged into vesicles in ipRGCs and PACAP may be coreleased with glutamate in the SCN. vGlut2 has been conditionally deleted in ipRGCs in mice [conditional knock-outs (cKOs)] and their aberrant photoentrainment and residual attenuated light responses have been ascribed to ipRGC PACAP release. However, there is no direct evidence that all ipRGC glutamatergic neurotransmission is eliminated in vGlut2 cKOs. Here, we examined two lines of ipRGC vGlut2 cKO mice for SCN-mediated behavioral responses under several lighting conditions and for ipRGC glutamatergic neurotransmission in the SCN. Circadian behavioral responses varied from a very limited response to light to near normal photoentrainment. After collecting behavioral data, hypothalamic slices were prepared and evoked EPSCs (eEPSCs) were recorded from SCN neurons by stimulating the optic chiasm. In cKOs, glutamatergic eEPSCs were recorded and all eEPSC parameters examined (stimulus threshold, amplitude, rise time or time-to-peak and stimulus strength to evoke a maximal response) were similar to controls. We conclude that a variable number but functionally significant percentage of ipRGCs in two vGlut2 cKO mouse lines continue to release glutamate. Thus, the residual SCN-mediated light responses in these cKO mouse lines cannot be attributed solely to ipRGC PACAP release

    Neurophysiology

    Get PDF
    Contains reports on sixo research projects.National Institutes of Health (Grant 5 RO1 NB-04985-03)National Institutes of Health (Grant 5 RO1 NB-4897-03)National Institutes of Health (Grant NB-06251-01)U.S. Air Force (Office of Scientific Research) under Grant AF-AFOSR-880-65U.S. Air Force (Research and Technology Division) under Contract AF33(615)-1747The Teagle Foundation, Inc. (Grant)Bell Telephone Laboratories, Inc. (Grant)Instrumentation Laboratory under the auspices of DSR Project 55-257Bioscience Division of National Aeronautics and Space Administratio

    Ab initio Random Structure Searching

    Full text link
    It is essential to know the arrangement of the atoms in a material in order to compute and understand its properties. Searching for stable structures of materials using first-principles electronic structure methods, such as density functional theory (DFT), is a rapidly growing field. Here we describe our simple, elegant and powerful approach to searching for structures with DFT which we call ab initio random structure searching (AIRSS). Applications to discovering structures of solids, point defects, surfaces, and clusters are reviewed. New results for iron clusters on graphene, silicon clusters, polymeric nitrogen, hydrogen-rich lithium hydrides, and boron are presented.Comment: 44 pages, 23 figure

    Anomalous Aharonov--Bohm gap oscillations in carbon nanotubes

    Full text link
    The gap oscillations caused by a magnetic flux penetrating a carbon nanotube represent one of the most spectacular observation of the Aharonov-Bohm effect at the nano--scale. Our understanding of this effect is, however, based on the assumption that the electrons are strictly confined on the tube surface, on trajectories that are not modified by curvature effects. Using an ab-initio approach based on Density Functional Theory we show that this assumption fails at the nano-scale inducing important corrections to the physics of the Aharonov-Bohm effect. Curvature effects and electronic density spilled out of the nanotube surface are shown to break the periodicity of the gap oscillations. We predict the key phenomenological features of this anomalous Aharonov-Bohm effect in semi-conductive and metallic tubes and the existence of a large metallic phase in the low flux regime of Multi-walled nanotubes, also suggesting possible experiments to validate our results.Comment: 7 figure

    Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons

    Get PDF
    Retinal dopaminergic amacrine neurons (DA neurons) play a central role in reconfiguring retinal function according to prevailing illumination conditions, yet the mechanisms by which light regulates their activity are poorly understood. We investigated the means by which sustained light responses are evoked in DA neurons. Sustained light responses were driven by cationic currents and persisted in vitro and in vivo in the presence of L-AP4, a blocker of retinal ON-bipolar cells. Several characteristics of these L-AP4-resistant light responses suggested that they were driven by melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs), including long latencies, marked poststimulus persistence, and a peak spectral sensitivity of 478 nm. Furthermore, sustained DA neuron light responses, but not transient DA neuron responses, persisted in rod/cone degenerate retinas, in which ipRGCs account for virtually all remaining retinal phototransduction. Thus, ganglion-cell photoreceptors provide excitatory drive to DA neurons, most likely by way of the coramification of their dendrites and the processes of DA neurons in the inner plexiform layer. This unprecedented centrifugal outflow of ganglion-cell signals within the retina provides a novel basis for the restructuring of retinal circuits by light

    Suppression of electron-electron repulsion and superconductivity in Ultra Small Carbon Nanotubes

    Full text link
    Recently, ultra-small-diameter Single Wall Nano Tubes with diameter of 0.4nm \sim 0.4 nm have been produced and many unusual properties were observed, such as superconductivity, leading to a transition temperature Tc15oKT_c\sim 15^oK, much larger than that observed in the bundles of larger diameter tubes. By a comparison between two different approaches, we discuss the issue whether a superconducting behavior in these carbon nanotubes can arise by a purely electronic mechanism. The first approach is based on the Luttinger Model while the second one, which emphasizes the role of the lattice and short range interaction, is developed starting from the Hubbard Hamiltonian. By using the latter model we predict a transition temperature of the same order of magnitude as the measured one.Comment: 7 pages, 3 figures, to appear in J. Phys.-Cond. Ma

    Neurophysiology

    Get PDF
    Contains research objectives and reports on one research project.U. S. Air Force Cambridge Research Laboratories under Contract AF19(628)-4147Bell Telephone Laboratories, Inc.National Institutes of Health (Grant MH-04737-04)National Science Foundation (Grant GP-2495)National Institutes of Health (Grant NB-04987-02)The Teagle Foundation, Inc.National Aeronautics and Space Administration (Grant NsG-496)U. S. Air Force (Aeronautical Systems Division) under Contract AF 33(615)-1747National Institutes of Health (Grant NB-04985-01

    Quasi-molecular and atomic phases of dense solid hydrogen

    Full text link
    The high-pressure phases of solid hydrogen are of fundamental interest and relevant to the interior of giant planets; however, knowledge of these phases is far from complete. Particle swarm optimization (PSO) techniques were applied to a structural search, yielding hitherto unexpected high-pressure phases of solid hydrogen at pressures up to 5 TPa. An exotic quasi-molecular mC24 structure (space group C2/c, stable at 0.47-0.59 TPa) with two types of intramolecular bonds was predicted, providing a deeper understanding of molecular dissociation in solid hydrogen, which has been a mystery for decades. We further predicted the existence of two atomic phases: (i) the oC12 structure (space group Cmcm, stable at > 2.1 TPa), consisting of planar H3 clusters, and (ii) the cI16 structure, previously observed in lithium and sodium, stable above 3.5 TPa upon consideration of the zero-point energy. This work clearly revised the known zero-temperature and high-pressure (>0.47 TPa) phase diagram for solid hydrogen and has implications for the constituent structures of giant planets.Comment: accepted in The Journal of Physical Chemistr

    The monomer-dimer problem and moment Lyapunov exponents of homogeneous Gaussian random fields

    Full text link
    We consider an "elastic" version of the statistical mechanical monomer-dimer problem on the n-dimensional integer lattice. Our setting includes the classical "rigid" formulation as a special case and extends it by allowing each dimer to consist of particles at arbitrarily distant sites of the lattice, with the energy of interaction between the particles in a dimer depending on their relative position. We reduce the free energy of the elastic dimer-monomer (EDM) system per lattice site in the thermodynamic limit to the moment Lyapunov exponent (MLE) of a homogeneous Gaussian random field (GRF) whose mean value and covariance function are the Boltzmann factors associated with the monomer energy and dimer potential. In particular, the classical monomer-dimer problem becomes related to the MLE of a moving average GRF. We outline an approach to recursive computation of the partition function for "Manhattan" EDM systems where the dimer potential is a weighted l1-distance and the auxiliary GRF is a Markov random field of Pickard type which behaves in space like autoregressive processes do in time. For one-dimensional Manhattan EDM systems, we compute the MLE of the resulting Gaussian Markov chain as the largest eigenvalue of a compact transfer operator on a Hilbert space which is related to the annihilation and creation operators of the quantum harmonic oscillator and also recast it as the eigenvalue problem for a pantograph functional-differential equation.Comment: 24 pages, 4 figures, submitted on 14 October 2011 to a special issue of DCDS-
    corecore