3,121 research outputs found
In search of grammaticalization in synchronic dialect data: General extenders in north-east England
In this paper, we draw on a socially stratified corpus of dialect data collected in north-east England to test recent proposals that grammaticalization processes are implicated in the synchronic variability of general extenders (GEs), i.e., phrase- or clause-final constructions such as and that and or something. Combining theoretical insights from the framework of grammaticalization with the empirical methods of variationist sociolinguistics, we operationalize key diagnostics of grammaticalization (syntagmatic length, decategorialization, semantic-pragmatic change) as independent factor groups in the quantitative analysis of GE variability. While multivariate analyses reveal rapid changes in apparent time to the social conditioning of some GE variants in our data, they do not reveal any evidence of systematic changes in the linguistic conditioning of variants in apparent time that would confirm an interpretation of ongoing grammaticalization. These results lead us to questio
Non-equilibrium dynamics of bosonic atoms in optical lattices: Decoherence of many-body states due to spontaneous emission
We analyze in detail the heating of bosonic atoms in an optical lattice due
to incoherent scattering of light from the lasers forming the lattice. Because
atoms scattered into higher bands do not thermalize on the timescale of typical
experiments, this process cannot be described by the total energy increase in
the system alone (which is determined by single-particle effects). The heating
instead involves an important interplay between the atomic physics of the
heating process and the many-body physics of the state. We characterize the
effects on many-body states for various system parameters, where we observe
important differences in the heating for strongly and weakly interacting
regimes, as well as a strong dependence on the sign of the laser detuning from
the excited atomic state. We compute heating rates and changes to
characteristic correlation functions based both on perturbation theory
calculations, and a time-dependent calculation of the dissipative many-body
dynamics. The latter is made possible for 1D systems by combining
time-dependent density matrix renormalization group (t-DMRG) methods with
quantum trajectory techniques.Comment: 17 pages, 14 figure
Methods in discourse variation analysis: Reflections on the way forward
This paper demonstrates the need for a uniform model of discourse variation analysis which is equipped to capture the complex nature of discourse variation and change whilst also ensuring generalizability. A review of the literature shows that the current heterogeneity in corpus construction, data quantification and theorizing of discourse variables impedes reliability and intersubjectivity. Suggestions are offered to achieve comparability, and a case is made for a consistent integration of pragmatic function as a factor group in the analysis. The extension of the variationist paradigm to the level of discourse is discussed, and the need for a definition of discourse variables which caters for their flexibility and multifunctionality is demonstrated. It is argued that some methodological consistency is required in variationist discourse analysis in order to advance towards a holistic description of patterns in language variation and change which spans all components of the grammar, and to systematically explore how discourse features are used and manipulated to create social identities
Pathologies in the sticky limit of hard-sphere-Yukawa models for colloidal fluids. A possible correction
A known `sticky-hard-sphere' model, defined starting from a
hard-sphere-Yukawa potential and taking the limit of infinite amplitude and
vanishing range with their product remaining constant, is shown to be
ill-defined. This is because its Hamiltonian (which we call SHS2) leads to an
{\it exact}second virial coefficient which {\it diverges}, unlike that of
Baxter's original model (SHS1). This deficiency has never been observed so far,
since the linearization implicit in the `mean spherical approximation' (MSA),
within which the model is analytically solvable, partly {\it masks} such a
pathology. To overcome this drawback and retain some useful features of SHS2,
we propose both a new model (SHS3) and a new closure (`modified MSA'), whose
combination yields an analytic solution formally identical with the SHS2-MSA
one. This mapping allows to recover many results derived from SHS2, after a
re-interpretation within a correct framework. Possible developments are finally
indicated.Comment: 21 pages, 1 figure, accepted in Molecular Physics (2003
Measuring entanglement growth in quench dynamics of bosons in an optical lattice
We discuss a scheme to measure the many-body entanglement growth during
quench dynamics with bosonic atoms in optical lattices. By making use of a 1D
or 2D setup in which two copies of the same state are prepared, we show how
arbitrary order Renyi entropies can be extracted using tunnel-coupling between
the copies and measurement of the parity of on-site occupation numbers, as has
been performed in recent experiments. We illustrate these ideas for a
Superfluid-Mott insulator quench in the Bose-Hubbard model, and also for
hard-core bosons, and show that the scheme is robust against imperfections in
the measurements.Comment: 4+ pages plus supplementary materia
Incidence of the Tomonaga-Luttinger liquid state on the NMR spin lattice relaxation in Carbon Nanotubes
We report 13C nuclear magnetic resonance measurements on single wall carbon
nanotube (SWCNT) bundles. The temperature dependence of the nuclear
spin-lattice relaxation rate, 1/T1, exhibits a power-law variation, as expected
for a Tomonage-Luttinger liquid (TLL). The observed exponent is smaller than
that expected for the two band TLL model. A departure from the power law is
observed only at low T, where thermal and electronic Zeeman energy merge.
Extrapolation to zero magnetic field indicates gapless spin excitations. The
wide T range on which power-law behavior is observed suggests that SWCNT is so
far the best realization of a one-dimensional quantum metal.Comment: 5 pages, 4 figure
Answer Set Solving with Bounded Treewidth Revisited
Parameterized algorithms are a way to solve hard problems more efficiently,
given that a specific parameter of the input is small. In this paper, we apply
this idea to the field of answer set programming (ASP). To this end, we propose
two kinds of graph representations of programs to exploit their treewidth as a
parameter. Treewidth roughly measures to which extent the internal structure of
a program resembles a tree. Our main contribution is the design of
parameterized dynamic programming algorithms, which run in linear time if the
treewidth and weights of the given program are bounded. Compared to previous
work, our algorithms handle the full syntax of ASP. Finally, we report on an
empirical evaluation that shows good runtime behaviour for benchmark instances
of low treewidth, especially for counting answer sets.Comment: This paper extends and updates a paper that has been presented on the
workshop TAASP'16 (arXiv:1612.07601). We provide a higher detail level, full
proofs and more example
Transition from a Tomonaga-Luttinger liquid to a Fermi liquid in potassium intercalated bundles of single wall carbon nanotubes
We report on the first direct observation of a transition from a
Tomonaga-Luttinger liquid to a Fermi liquid behavior in potassium intercalated
mats of single wall carbon nanotubes (SWCNT). Using high resolution
photoemission spectroscopy an analysis of the spectral shape near the Fermi
level reveals a Tomonaga-Luttinger liquid power law scaling in the density of
states for the pristine sample and for low dopant concentration. As soon as the
doping is high enough to fill bands of the semiconducting tubes a distinct
transition to a bundle of only metallic SWCNT with a scaling behavior of a
normal Fermi liquid occurs. This can be explained by a strong screening of the
Coulomb interaction between charge carriers and/or an increased hopping matrix
element between the tubes.Comment: 5 pages, 4 figure
- …