2,037 research outputs found
Doped carbon nanotubes as a model system of biased graphene
Albeit difficult to access experimentally, the density of states (DOS) is a
key parameter in solid state systems which governs several important phenomena
including transport, magnetism, thermal, and thermoelectric properties. We
study DOS in an ensemble of potassium intercalated single-wall carbon nanotubes
(SWCNT) and show using electron spin resonance spectroscopy that a sizeable
number of electron states are present, which gives rise to a Fermi-liquid
behavior in this material. A comparison between theoretical and the
experimental DOS indicates that it does not display significant correlation
effects, even though the pristine nanotube material shows a Luttinger-liquid
behavior. We argue that the carbon nanotube ensemble essentially maps out the
whole Brillouin zone of graphene thus it acts as a model system of biased
graphene
A Supercooled Spin Liquid State in the Frustrated Pyrochlore Dy2Ti2O7
A "supercooled" liquid develops when a fluid does not crystallize upon
cooling below its ordering temperature. Instead, the microscopic relaxation
times diverge so rapidly that, upon further cooling, equilibration eventually
becomes impossible and glass formation occurs. Classic supercooled liquids
exhibit specific identifiers including microscopic relaxation times diverging
on a Vogel-Tammann-Fulcher (VTF) trajectory, a Havriliak-Negami (HN) form for
the dielectric function, and a general Kohlrausch-Williams-Watts (KWW) form for
time-domain relaxation. Recently, the pyrochlore Dy2Ti2O7 has become of
interest because its frustrated magnetic interactions may, in theory, lead to
highly exotic magnetic fluids. However, its true magnetic state at low
temperatures has proven very difficult to identify unambiguously. Here we
introduce high-precision, boundary-free magnetization transport techniques
based upon toroidal geometries and gain a fundamentally new understanding of
the time- and frequency-dependent magnetization dynamics of Dy2Ti2O7. We
demonstrate a virtually universal HN form for the magnetic susceptibility, a
general KWW form for the real-time magnetic relaxation, and a divergence of the
microscopic magnetic relaxation rates with precisely the VTF trajectory. Low
temperature Dy2Ti2O7 therefore exhibits the characteristics of a supercooled
magnetic liquid; the consequent implication is that this translationally
invariant lattice of strongly correlated spins is evolving towards an
unprecedented magnetic glass state, perhaps due to many-body localization of
spin.Comment: Version 2 updates: added legend for data in Figures 4A and 4B;
corrected equation reference in caption for Figure 4
Fine-tuning the functional properties of carbon nanotubes via the interconversion of encapsulated molecules
Tweaking the properties of carbon nanotubes is a prerequisite for their
practical applications. Here we demonstrate fine-tuning the electronic
properties of single-wall carbon nanotubes via filling with ferrocene
molecules. The evolution of the bonding and charge transfer within the tube is
demonstrated via chemical reaction of the ferrocene filler ending up as
secondary inner tube. The charge transfer nature is interpreted well within
density functional theory. This work gives the first direct observation of a
fine-tuned continuous amphoteric doping of single-wall carbon nanotubes
Optical properties of the vibrations in charged C molecules
The transition strengths for the four infrared-active vibrations of charged
C molecules are evaluated in self-consistent density functional theory
using the local density approximation. The oscillator strengths for the second
and fourth modes are strongly enhanced relative to the neutral C
molecule, in good agreement with the experimental observation of ``giant
resonances'' for those two modes. Previous theory, based on a ``charged
phonon'' model, predicted a quadratic dependence of the oscillator strength on
doping, but this is not borne out in our calculations.Comment: 10 pages, RevTeX3.
Highly specific PCR-RFLP assays for karyotyping the widespread 2Rb inversion in malaria vectors of the Anopheles gambiae complex
Background: Chromosomal inversion polymorphisms play a role in adaptation to heterogeneous environments. Inversion polymorphisms are implicated in the very high ecological flexibility of the three main malaria vector species of the Afrotropical Anopheles gambiae complex, facilitating the exploitation of anthropogenic environmental modifications and promoting a strong association with humans. In addition to extending the species' spatial and temporal distribution, inversions are associated with epidemiologically relevant mosquito behavior and physiology, underscoring their medical importance. We here present novel PCR-RFLP based assays strongly predictive of genotype for the cosmopolitan 2Rb inversion in An. coluzzii and An. gambiae, a development which overcomes the numerous constraints inherent to traditional cytological karyotyping. Methods: We designed PCR-RFLP genotyping assays based on tag SNPs previously computationally identified as strongly predictive (> 95%) of 2Rb genotype. We targeted those tags whose alternative allelic states destroyed or created the recognition site of a commercially available restriction enzyme, and designed assays with distinctive cleavage profiles for each inversion genotype. The assays were validated on 251 An. coluzzii and 451 An. gambiae cytologically karyotyped specimens from nine countries across Africa and one An. coluzzii laboratory colony. Results: For three tag SNPs, PCR-RFLP assays (denoted DraIII, MspAI, and TatI) reliably produced robust amplicons and clearly distinguishable electrophoretic profiles for all three inversion genotypes. Results obtained with the DraIII assay are ≥ 95% concordant with cytogenetic assignments in both species, while MspAI and TatI assays produce patterns highly concordant with cytogenetic assignments only in An. coluzzii or An. gambiae, respectively. Joint application of species-appropriate pairs of assays increased the concordance levels to > 99% in An. coluzzii and 98% in An. gambiae. Potential sources of discordance (e.g. imperfect association between tag and inversion, allelic dropout, additional polymorphisms in the restriction target site, incomplete or failed restriction digestion) are discussed. Conclusions: The availability of highly specific, cost effective and accessible molecular assays for genotyping 2Rb in An. gambiae and An. coluzzii allows karyotyping of both sexes and all developmental stages. These novel tools will accelerate deeper investigations into the role of this ecologically and epidemiologically important chromosomal inversion in vector biology.[Figure not available: see fulltext.
Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes
The electronic properties of p-doped single-walled carbon nanotube (SWNT) bulk samples were studied by temperature-dependent resistivity and thermopower, optical reflectivity, and Raman spectroscopy. These all give consistent results for the Fermi level downshift (Delta E(F)) induced by doping. We find Delta E(F) approximate to 0.35 eV and 0.50 eV for concentrated nitric and sulfuric acid doping respectively. With these values, the evolution of Raman spectra can be explained by variations in the resonance condition as E(F) moves down into the valence band. Furthermore, we find no evidence for diameter-selective doping, nor any distinction between doping responses of metallic and semiconducting tubes
Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene
We have measured a strictly linear pi-plasmon dispersion along the axis of
individualized single wall carbon nanotubes, which is completely different from
plasmon dispersions of graphite or bundled single wall carbon nanotubes.
Comparative ab initio studies on graphene based systems allow us to reproduce
the different dispersions. This suggests that individualized nanotubes provide
viable experimental access to collective electronic excitations of graphene,
and it validates the use of graphene to understand electronic excitations of
carbon nanotubes. In particular, the calculations reveal that local field
effects (LFE) cause a mixing of electronic transitions, including the 'Dirac
cone', resulting in the observed linear dispersion
Multilingual gendered identities: female undergraduate students in London talk about heritage languages
In this paper I explore how a group of female university students, mostly British Asian and in their late teens and early twenties, perform femininities in talk about heritage languages. I argue that analysis of this talk reveals ways in which the participants enact ‘culturally intelligible’ gendered subject positions. This frequently involves negotiating the norms of ‘heteronormativity’, constituting femininity in terms of marriage, motherhood and maintenance of heritage culture and language, and ‘girl power’, constituting femininity in terms of youth, sassiness, glamour and individualism. For these young women, I ask whether higher education can become a site in which they have the opportunities to explore these identifications and examine other ways of imagining the self and what their stories suggest about ‘doing being’ a young British Asian woman in London
- …