16 research outputs found
Control of magnetotactic bacterium in a micro-fabricated maze
We demonstrate the closed-loop control of a magnetotactic bacterium (MTB), i.e., Magnetospirillum magnetotacticum, within a micro-fabricated maze using a magneticbased manipulation system. The effect of the channel wall on the motion of the MTB is experimentally analyzed. This analysis is done by comparing the characteristics of the transient- and steady-states of the controlled MTB inside and outside a microfabricated maze. In this analysis, the magnetic dipole moment of our MTB is characterized using a motile technique (the u-turn technique), then used in the realization of a closed-loop control system. This control system allows the MTB to reach reference positions within a micro-fabricated maze with a channel width of 10 ÎŒm, at a velocity of 8 ÎŒm/s. Further, the control system positions the MTB within a region-of-convergence of 10 ÎŒm in diameter. Due to the effect of the channel wall, we observe that the velocity and the positioning accuracy of the MTB are decreased and increased by 71% and 44%, respectively
Closed-loop control of magnetotactic bacteria
Realization of point-to-point positioning of a magnetotactic bacterium (MTB) necessitates the application of a relatively large magnetic field gradients to decrease its velocity in the vicinity of a reference position. We investigate an alternative closed-loop control approach to position the MTB. This approach is based on the characterization of the magnetic dipole moment of the MTB and its response to a field with alternating direction. We do not only find agreement between our characterized magnetic dipole moment and previously published results, but also observe that the velocity of the MTB decreases by 37% when a field with alternating direction is applied at 85 Hz. The characterization results allow us to devise a null-space control approach which capitalizes on the redundancy of magnetic-based manipulation systems. This approach is based on two inputs. The first controls the orientation of the MTB, whereas the second generates a field with alternating direction to decrease its velocity. This control is accomplished by the redundancy of our magnetic-based manipulation system which allows for the projection of the second input onto the null-space of the magnetic force-current map of our system. A proportionalâderivative control system positions the MTB at an average velocity and region of convergence of 29 ÎŒm sâ1 and 20 ÎŒm, respectively, while our null-space control system achieves an average velocity and region of convergence of 15 ÎŒm sâ1 and 13 ÎŒm, respectively
An integrated magnet array for trapping and manipulation of magnetotactic bacteria in microfluidics
We present a novel system for localized magnetic manipulation of magnetotactic bacteria in microfluidic systems. Where other methods require small conductive tracks directly below the sample, the new system consists of an array of permanent magnets switchable by a drive current to either trap or guide bacteria. This allows for much higher magnetic fields at reduced power consumption. Both a theoretical analysis and experimental analysis are presented. The system is scalable and is suited for integration in microfluidics
Dynamic Image-Based Modelling of Kidney Branching Morphogenesis
Kidney branching morphogenesis has been studied extensively, but the
mechanism that defines the branch points is still elusive. Here we obtained a
2D movie of kidney branching morphogenesis in culture to test different models
of branching morphogenesis with physiological growth dynamics. We carried out
image segmentation and calculated the displacement fields between the frames.
The models were subsequently solved on the 2D domain, that was extracted from
the movie. We find that Turing patterns are sensitive to the initial conditions
when solved on the epithelial shapes. A previously proposed diffusion-dependent
geometry effect allowed us to reproduce the growth fields reasonably well, both
for an inhibitor of branching that was produced in the epithelium, and for an
inducer of branching that was produced in the mesenchyme. The latter could be
represented by Glial-derived neurotrophic factor (GDNF), which is expressed in
the mesenchyme and induces outgrowth of ureteric branches. Considering that the
Turing model represents the interaction between the GDNF and its receptor RET
very well and that the model reproduces the relevant expression patterns in
developing wildtype and mutant kidneys, it is well possible that a combination
of the Turing mechanism and the geometry effect control branching
morphogenesis
Upper limits from five years of blazar observations with the VERITAS Cherenkov telescopes
Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E > 100 GeV) Îł-ray sources. In this work, we present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of ~570 hr. The sample includes several unidentified Fermi-Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi-LAT catalog that are contained within the field of view of the VERITAS observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have spectroscopic distance estimates. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of four of them. For each of the blazars included in our sample, we provide the flux upper limit in the VERITAS energy band. We also study the properties of the significance distributions and we present the result of a stacked analysis of the data set, which shows a 4Ï excess
Pengaruh Pemberian Ketotifen terhadap Jumlah Sel Fibroblas dan Kepadatan Sel Kolagen pada Luka Insisi Tikus Wistar
Ingga Hadian, S-501202027. PENGARUH PEMBERIAN KETOTIFEN TERHADAP JUMLAH SEL FIBROBLAS DAN KEPADATAN SEL KOLAGEN PADA LUKA INSISI TIKUS WISTAR. Pembimbing I : DR. Untung Alfianto, dr, Sp.Bs, Pembimbing II : dr. Ardana Tri Arianto. Msi. Med. Sp.An-KNA. Program studi Magister Kedokteran Keluarga, Minat Utama Ilmu Biomedik, Fakultas Kedokteran Universitas Sebelas Maret, Surakarta, 2016. Latar Belakang : Sel mast merupakan salah satu yang berperan dalam proses inflamasi pada penyembuhan luka. Sel mast dikaitkan dengan kejadian luka kronis, sehingga sel mast diduga ikut memelihara proses inflamasi secara berlebihan. Hambatan pada degranulasi sel mast diharapkan akan mempercepat penyembuhan luka yang ditandai dengan meningkatnya jumlah sel fibroblas dan kepadatan sel kolagen. Ketotifen mampu mengurangi dreganulasi sel Mast dan mengurangi pelepasan Histamin, protease sel Mast, myeloperoxidase, leukotriens, PAF dan bermacam-macam Prostaglandin. Ketotifen juga menghambat agregasi polimorfonuklear serta mengurangi respon inflamasi dan mempercepat migrasi fibroblas di fase proliferasi. Tujuan :Mengetahui perbedaan jumlah sel fibroblas dan kepadatan sel kolagen pada tikus wistar yang diberikan Ketotifen oral dosis 0.3 mg/kg dibandingkan plasebo pada penyembuhan luka insisi tikus wistar. Metode : Penelitian ini termasuk true eksperimental laboratorik dengan desain Randomized Controlled Trial yang menggunakan tikus wistar sebagai obyek penelitian. 14 tikus Wistar dibagi dalam 2 kelompok, masing masing kelompok terdiri atas 7 tikus Wistar. Kelompok 1 merupakan kelompok kontrol yang dilakukan insisi sepanjang 2cm pada kulit punggung tikus dan diberikan plasebo per oral selama 6 hari. Kelompok 2 merupakan kelompok perlakuan yang dilakukan insisi sepanjang 2cm pada kulit punggung tikus dan diberikan Ketotifen 0,3 mg/kgBB per oral setiap 12 jam selama 6 hari. Analisis data untuk membandingkan rerata antar kedua kelompok yaitu kelompok perlakuan dan kelompok kontrol menggunakan uji independent samples t-test, dengan tingkat kemaknaan p < 0,05 (dikatakan bermakna secara statistik). Hasil : Pada kelompok kontrol didapatkan rerata persentase kepadatan sel kolagen sebesar 26,05 %, sedangkan pada kelompok Ketotifen didapatkan rerata persentase kepadatan sel kolagen sebesar 36,13 %. Untuk jumlah sel fibroblas pada kelompok kontrol didapatkan rerata sebesar 423 per lapang pandang, sedangkan pada kelompok Ketotifen didapatkan rerata sebesar 555,43 per lapang pandang. Kesimpulan : Ketotifen mempercepat penyembuhan luka ditandai dengan peningkatan sel fibroblas dan sel kolagen. Kata Kunci : Sel Mast, Ketotifen, Sel fibroblas, Serabut Kolagen. ABSTRACT Ingga Hadian, S-501202027. EFFECTS OF KETOTIFEN ON FIBROBLAST CELL COUNT AND COLLAGEN DENSITY ON INCISED WISTAR RATS. DR. Untung Alfianto, dr., Sp.BS, dr. Ardana Tri Arianto, Msi, Med, Sp.An-KNA. Background: Mast cells have a pivotal role in every healing process that involves inflammation of the cells, usually in wounds of chronic nature. If the degranulation process of the mast cells are inhibited, the healing process of the wound will accelerate, indicated by a raise in fibroblast cells and collagen density. Ketotifen are shown to inhibit the degranulation process and decreasing the release of histamin, mast cells proteases, myeloperoxidases, leukotriens, PAF, and various prostaglandins. Ketotifen can also inhibit the aggregation of polymorphonuclear cells, increasing the rate of fibroblast migration in the proliferation phase. This study was aimed to identify the effects of ketotifen on fibroblast cell count and collagen density tested on a wistar rats model. Methods: This study was a true laboratoric experimental study with randomized controlled trial using wistar rats model as objects. 14 rats were divided into two groups, each group contained seven rats. The first group was the control group, where the rats were incised 2 cm above the back skin, and were given per oral placebo for 6 days. The second group were given the same treatment, only the rats were given ketotifen 0.3 mg/kg per oral, every 12 hours lasting 6 days. The data were then collected and tested with independent sample t-test, with p value less than 0,05 is statistically significant. Results: In the control group, the mean percentage of the thickest collagen density were marked at 26.05%, whereas in the treatment group collagen density were marked at 36.13%. The mean fibroblast cell count were marked at 423 and 555.43 each viewing field, on the control group and the treatment group respectively. Conclusion: Ketotifen can accelerate the healing process, marked by the significant increase in collagen density and fibroblast cell count. Keywords: mast cells, ketotifen, fibroblast cells, collagen fibers
Fast Segmentation of Foreign Fiber Image
Part 1: Simulation, Optimization, Monitoring and Control TechnologyInternational audienceIn the textile industry, different types of foreign fibers may be mixed in cotton, and the foreign fibers seriously affect the quality of cotton products. The step of image segmentation is of vital importance in the process of the foreign fibers identification, which is, in the same way, the foundation for cotton foreign fiber automated inspection. This paper presents a new approach for fast segmentation of foreign fiber images. This approach includes four main steps, i.e., image transformation, image block, image background extraction, image enhancement and segmentation. In the first step, we transform the captured color images into gray-scale images, and invert the color of the transformed images. In the second step, the proportion relationship between target image and background was analyzed, and then the whole foreign fibers image was divided into several blocks based on the analysis results. In the third step, the background of foreign fiber image was extracted by image corrosion and gray-level correction. In the final step, the histogram of the gray-scale image was analyzed, and a piecewise linear transform model was proposed to enhance the image blocks based on the analysis results, and then the image blocks were segmented by Otsuâs method. The experiment results indicate that the proposed method can segment the foreign fiber image directly and precisely, and the speed of image processing is much faster than that of the conventional methods