12,298 research outputs found

    Culture-based artefacts to inform ICT design: foundations and practice

    Get PDF
    Cultural aspects frame our perception of the world and direct the many different ways people interact with things in it. For this reason, these aspects should be considered when designing technology with the purpose to positively impact people in a community. In this paper, we revisit the foundations of culture aiming to bring this concept in dialogue with design. To inform design with cultural aspects, we model reality in three levels of formality: informal, formal, and technical, and subscribe to a systemic vision that considers the technical solution as part of a more complex social system in which people live and interact. In this paper, we instantiate this theoretical and methodological view by presenting two case studies of technology design in which culture-based artefacts were employed to inform the design process. We claim that as important as including issues related to culture in the ICT design agenda—from the conception to the development, evaluation, and adoption of a technology—is the need to support the design process with adequate artefacts that help identifying cultural aspects within communities and translating them into sociotechnical requirements. We argue that a culturally informed perspective on design can go beyond an informative analysis, and can be integrated with the theoretical and methodological framework used to support design, throughout the entire design process

    On the effect of nano-injectors on conduction in silicon p-i-n diodes

    Get PDF
    P–i–n diodes are widely used in power electronics [1-2], solar cells [3], light detection [4] and also light generation [5]. Contrary to the case of light detection or conversion, light generation is usually achieved by biasing the device in forward mode, in a condition of carrier injection. Depending on its level, the device can operate in regimes controlled by respectively generation/recombination current, diffusion current or the so called series resistance [6]. The injection level also controls the balance between the recombination mechanisms, and it is commonly controlled via the applied bias, which could be fixed by the specific application rather then being a free parameter. A possible approach to better control the injection level is to modify the features of the carrier injectors, for instance by thinning down the junction area [7] or reducing the injectors itself to a nanometer scale [8]. A practical way to realize nano-injectors is to embed the intrinsic region in oxide and create the connection between the intrinsic region and the two extension regions via antifuses, as realized in [9]. The size and properties of the antifuses can be controlled electrically, making it suitable to analyze the effects of progressive scaling of the dimensions of carrier injectors. In this work, we compare electrical behaviors of a standard p-i-n diode with antifuse p-i-n diodes programmed at different conditions. Electrical I-V measurements are performed at temperatures between -20 and 200 °C (I-V-T characteristics) in order to investigate the dominant mechanisms in the conduction

    Measuring Propagation Speed of Coulomb Fields

    Get PDF
    The problem of gravity propagation has been subject of discussion for quite a long time: Newton, Laplace and, in relatively more modern times, Eddington pointed out that, if gravity propagated with finite velocity, planets motion around the sun would become unstable due to a torque originating from time lag of the gravitational interactions. Such an odd behavior can be found also in electromagnetism, when one computes the propagation of the electric fields generated by a set of uniformly moving charges. As a matter of fact the Li\'enard-Weichert retarded potential leads to a formula indistinguishable from the one obtained assuming that the electric field propagates with infinite velocity. Feyman explanation for this apparent paradox was based on the fact that uniform motions last indefinitely. To verify such an explanation, we performed an experiment to measure the time/space evolution of the electric field generated by an uniformely moving electron beam. The results we obtain on such a finite lifetime kinematical state seem compatible with an electric field rigidly carried by the beam itself.Comment: 23 pages, 15 figure

    Lessons from Flanders: drivers & pitfalls of cooperation on a business park

    Get PDF
    For almost ten years several companies located in De Zaubeek Business Park in Flanders have been collaborating with the goal of creating a more sustainable industrial zone. Many initiatives have been developed in this business park, many successful, but some clearly pointed to constraints that require action beyond the reach of the companies or the business association. The former chairman of the association has been involved in several of these initiatives and we asked him to tell his story

    Sampling errors in rainfall measurements by weather radar

    No full text
    International audienceRadar rainfall data are affected by several types of error. Beside the error in the measurement of the rainfall reflectivity and its transformation into rainfall intensity, random errors can be generated by the temporal spacing of the radar scans. The aim of this work is to analize the sensitivity of the estimated rainfall maps to the radar sampling interval, i.e. the time interval between two consecutive radar scans. This analysis has been performed employing data collected with a polarimetric C-band radar in Rome, Italy. The radar data consist of reflectivity maps with a sampling interval of 1min and a spatial resolution of 300m, covering an area of 1296km2. The transformation of the reflectivity maps in rainfall fields has been validated against rainfall data collected by a network of 14 raingauges distributed across the study area. Accumulated rainfall maps have been calculated for different spatial resolutions (from 300m to 2400m) and different sampling intervals (from 1min to 16min). The observed differences between the estimated rainfall maps are significant, showing that the sampling interval can be an important source of error in radar rainfall measurements

    Fiber Bragg Grating sensors for deformation monitoring of GEM foils in HEP detectors

    Full text link
    Fiber Bragg Grating (FBG) sensors have been so far mainly used in high energy physics (HEP) as high precision positioning and re-positioning sensors and as low cost, easy to mount, radiation hard and low space- consuming temperature and humidity devices. FBGs are also commonly used for very precise strain measurements. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide Gas Electron Multiplier (GEM) foils of the GE1/1 chambers of the Compact Muon Solenoid (CMS) experiment at Large Hadron Collider (LHC) of CERN. A network of FBG sensors has been used to determine the optimal mechanical tension applied and to characterize the mechanical stress applied to the foils. The preliminary results of the test performed on a full size GE1/1 final prototype and possible future developments will be discussed.Comment: Four pages, seven figures. Presented by Michele Caponero at IWASI 2015, Gallipoli (Italy
    • …
    corecore