5,725 research outputs found

    Gender homophily from spatial behavior in a primary school: a sociometric study

    Full text link
    We investigate gender homophily in the spatial proximity of children (6 to 12 years old) in a French primary school, using time-resolved data on face-to-face proximity recorded by means of wearable sensors. For strong ties, i.e., for pairs of children who interact more than a defined threshold, we find statistical evidence of gender preference that increases with grade. For weak ties, conversely, gender homophily is negatively correlated with grade for girls, and positively correlated with grade for boys. This different evolution with grade of weak and strong ties exposes a contrasted picture of gender homophily

    Comparative genomics of the sheep blow fly Lucilia cuprina

    Get PDF
    poster abstractInsects employ different adaptive strategies in response to selective pressures, such as competition for limited resources. Carrion insects provide the ideal case to study these fundamental processes of adaptive evolution due to the intense selective pressures placed on developing larvae with limited food resources, their widespread and abundant distributions, and the presence of geographically distinct populations with specialized adaptations. One adaptation is facultative ectoparasitism, where the insect strikes a healthy animal and feeds on the living flesh, providing a developmental advantage over competitor fly species, but causing significant harm to the host. Lucilia species, which hybridize in the wild and form geographically distinct subpopulations in other regions, are diverging, meaning that we can observe and quantify early biological adaptive processes that govern speciation as they are occurring over hundreds, instead of millions, of years. The draft genome of a North American male Lucilia cuprina fly (carrion breeder) was assembled using a combination of short and long read sequences. This genome is compared to an existing Australian draft genome (ectoparasite) by elucidating genomic structure in key adaptive processes (i.e. immune system evasion) via high-throughput re-sequencing of parasitic specimens, gene prediction and annotation. The carcass colonized by or animal parasitized by both species, with some geographic overlap, provides a semi-controlled environment within the larger context of the ecosystem to sample a large number of individuals with similar life history strategies, allowing for direct comparative studies to elucidate the correlation between structure and function in the genomes of carrion flies – allowing us to understand biological adaptation and speciation

    De Novo Genome Assembly of Phormia regina (Diptera: Calliphoridae)

    Get PDF
    poster abstractPhormia regina (Meigen), commonly known as the black blow fly, is a dipteran that belongs to the family Calliphoridae (blow flies). Calliphorids play an important role in various research fields like ecology, medical studies, veterinary and forensic sciences. P. regina is one of the common forensically relevant insects in North America and is typically used to assist in estimating post-mortem intervals (PMI). To better understand the roles it plays in the numerous research fields, we aim to re-construct its genome using next generation sequencing technologies. We are specifically focusing on generating a reference genome by de novo assembly then use the genomic data to identify genetic markers (microsatellites, single nucleotide polymorphisms) that contribute to intra- and inter-population variation with regards to geographic location. DNA was extracted from five adult male and female flies and was sequenced using the Illumina HiSeq2000 sequencing platform. More than 250 million high quality reads were produced from each sex. These reads were used in the de novo genome assembly of the female, male and combined sexes. The assembled draft genomes produced approximately 251,115 contigs, 306,273 contigs, and 325,664 contigs respectively. The assembled genome sizes totaled to ~524 Mbp and ~508 Mbp for the female and male flies, respectively. Compared to the estimated genome sizes from a previous study of 529 Mbp for females and 517 Mbp for males, we can conclude that a majority of the genome sequence (~99%) is included in the assembly. Gene prediction and annotation of the draft genomes are currently in progress. The draft reference genomes assembled from this study will provide an important resource for analyzing genetic basis of variations between and among blow fly species, which will ultimately facilitate ongoing studies in various areas of research that utilize blow flies as study models. It will also be a source where reliable genomic data can be readily available and used in downstream analysis to increase the understanding of the genetic, molecular and cellular processes of blow flies

    Water Vapour Effects in Mass Measurement

    Full text link
    Water vapour inside the mass comparator enclosure is a critical parameter. In fact, fluctuations of this parameter during mass weighing can lead to errors in the determination of an unknown mass. To control that, a proposal method is given and tested. Preliminary results of our observation of water vapour sorption and desorption processes from walls and mass standard are reported

    Deep Radio Imaging of Globular Clusters and the Cluster Pulsar Population

    Full text link
    We have obtained deep multifrequency radio observations of seven globular clusters using the Very Large Array and the Australia Telescope Compact Array. Five of these, NGC 6440, NGC 6539, NGC 6544, NGC 6624 and Terzan 5 had previously been detected in a shallower survey for steep spectrum radio sources in globular clusters (Fruchter and Goss 1990). The sixth, the rich globular cluster, Liller 1, had heretofore been undetected in the radio, and the seventh, 47 Tucanae, was not included in our original survey. High resolution 6 and 20 cm images of three of the clusters, NGC 6440, NGC 6539, NGC 6624 reveal only point sources coincident with pulsars which have been discovered subsequent to our first imaging survey. 21 and 18 cm images reveal several point sources within a few core-radii of the center of 47 Tuc. Two of these are identified pulsars, and a third, which is both variable and has a steep spectrum, is also most likely a pulsar previously identified by a pulsed survey. However, the 6, 20 and 90 cm images of NGC 6544, Liller 1 and Terzan 5 display strong steep-spectrum emission which cannot be associated with known pulsars. The image of the rich cluster Terzan 5 displays numerous point sources within 30′′30'', or 4 core radii of the cluster center. The density of these objects rises rapidly toward the core, where an elongated region of emission is found. The brightest individual sources, as well as the extended emission, possess the steep spectra expected of pulsars. Furthermore, the flux distribution of the sources agrees well with the standard pulsar luminosity function. The total luminosity and number of objects observed suggest that Terzan 5 contains more pulsars than any other Galactic globular cluster.Comment: 33 pages, 6 Postscript figures; Accepted for publication in the Astrophysical Journal; abstract abridged. PDF version also available at http://nemesis.stsci.edu/~fruchter/fg99/fg99.pd

    Semiclassical and quantum Liouville theory

    Full text link
    We develop a functional integral approach to quantum Liouville field theory completely independent of the hamiltonian approach. To this end on the sphere topology we solve the Riemann-Hilbert problem for three singularities of finite strength and a fourth one infinitesimal, by determining perturbatively the Poincare' accessory parameters. This provides the semiclassical four point vertex function with three finite charges and a fourth infinitesimal. Some of the results are extended to the case of n finite charges and m infinitesimal. With the same technique we compute the exact Green function on the sphere on the background of three finite singularities. Turning to the full quantum problem we address the calculation of the quantum determinant on the background of three finite charges and of the further perturbative corrections. The zeta function regularization provides a theory which is not invariant under local conformal transformations. Instead by employing a regularization suggested in the case of the pseudosphere by Zamolodchikov and Zamolodchikov we obtain the correct quantum conformal dimensions from the one loop calculation and we show explicitly that the two loop corrections do not change such dimensions. We then apply the method to the case of the pseudosphere with one finite singularity and compute the exact value for the quantum determinant. Such results are compared to those of the conformal bootstrap approach finding complete agreement.Comment: 12 pages, 1 figure, Contributed to 5th Meeting on Constrained Dynamics and Quantum Gravity (QG05), Cala Gonone, Sardinia, Italy, 12-16 Sep 200

    Liouville field theory with heavy charges. II. The conformal boundary case

    Get PDF
    We develop a general technique for computing functional integrals with fixed area and boundary length constraints. The correct quantum dimensions for the vertex functions are recovered by properly regularizing the Green function. Explicit computation is given for the one point function providing the first one loop check of the bootstrap formula.Comment: LaTeX 26 page

    H(3)+ correlators from Liouville theory

    Full text link
    We prove that arbitrary correlation functions of the H(3)+ model on a sphere have a simple expression in terms of Liouville theory correlation functions. This is based on the correspondence between the KZ and BPZ equations, and on relations between the structure constants of Liouville theory and the H(3)+ model. In the critical level limit, these results imply a direct link between eigenvectors of the Gaudin Hamiltonians and the problem of uniformization of Riemann surfaces. We also present an expression for correlation functions of the SL(2)/U(1) coset model in terms of correlation functions in Liouville theory.Comment: 24 pages, v3: minor changes, references adde

    Genome sequence of Phormia regina Meigen (Diptera: Calliphoridae): implications for medical, veterinary and forensic research

    Get PDF
    BACKGROUND: Blow flies (Diptera: Calliphoridae) are important medical, veterinary and forensic insects encompassing 8 % of the species diversity observed in the calyptrate insects. Few genomic resources exist to understand the diversity and evolution of this group. RESULTS: We present the hybrid (short and long reads) draft assemblies of the male and female genomes of the common North American blow fly, Phormia regina (Diptera: Calliphoridae). The 550 and 534 Mb draft assemblies contained 8312 and 9490 predicted genes in the female and male genomes, respectively; including > 93 % conserved eukaryotic genes. Putative X and Y chromosomes (21 and 14 Mb, respectively) were assembled and annotated. The P. regina genomes appear to contain few mobile genetic elements, an almost complete absence of SINEs, and most of the repetitive landscape consists of simple repetitive sequences. Candidate gene approaches were undertaken to annotate insecticide resistance, sex-determining, chemoreceptors, and antimicrobial peptides. CONCLUSIONS: This work yielded a robust, reliable reference calliphorid genome from a species located in the middle of a calliphorid phylogeny. By adding an additional blow fly genome, the ability to tease apart what might be true of general calliphorids vs. what is specific of two distinct lineages now exists. This resource will provide a strong foundation for future studies into the evolution, population structure, behavior, and physiology of all blow flies
    • …
    corecore