32 research outputs found

    Estreno en Broadway by Rodolfo Usigli

    Get PDF

    Walt Whitman and his French critics

    Full text link
    This item was digitized by the Internet Archive. Thesis (M.A.)--Boston Universityhttps://archive.org/details/waltwhitmanhisfr00pic

    Biological Roles of the Podospora anserina Mitochondrial Lon Protease and the Importance of Its N-Domain

    Get PDF
    Mitochondria have their own ATP-dependent proteases that maintain the functional state of the organelle. All multicellular eukaryotes, including filamentous fungi, possess the same set of mitochondrial proteases, unlike in unicellular yeasts, where ClpXP, one of the two matricial proteases, is absent. Despite the presence of ClpXP in the filamentous fungus Podospora anserina, deletion of the gene encoding the other matricial protease, PaLon1, leads to lethality at high and low temperatures, indicating that PaLON1 plays a main role in protein quality control. Under normal physiological conditions, the PaLon1 deletion is viable but decreases life span. PaLon1 deletion also leads to defects in two steps during development, ascospore germination and sexual reproduction, which suggests that PaLON1 ensures important regulatory functions during fungal development. Mitochondrial Lon proteases are composed of a central ATPase domain flanked by a large non-catalytic N-domain and a C-terminal protease domain. We found that three mutations in the N-domain of PaLON1 affected fungal life cycle, PaLON1 protein expression and mitochondrial proteolytic activity, which reveals the functional importance of the N-domain of the mitochondrial Lon protease. All PaLon1 mutations affected the C-terminal part of the N-domain. Considering that the C-terminal part is predicted to have an α helical arrangement in which the number, length and position of the helices are conserved with the solved structure of its bacterial homologs, we propose that this all-helical structure participates in Lon substrate interaction

    Identification er rôle des transporteurs ABC peroxysomaux dans le développement sexué du champignon filamenteux P. anserina

    No full text
    Les peroxysomes participent à de nombreuses fonctions cellulaires, ubiquitaires ou spécifiques dont certaines restent mal comprises. Chez le champignon filamenteux Podospora anserina, le mutant d'assemblage des peroxysomes pex2 (syndrome de Zellweger chez l'homme) est altéré dans son développement sexué. Afin de confirmer l'implication des peroxysomes dans le développement sexué chez Podospora nous avons tiré profit d'une observation: dans les cellules de mammifères mutantes pour le gène PEX2, la surexpression de l'un des transporteurs ABC peroxysomaux, PMP70 ou ALDP, restaure l'assemblage des peroxysomes. Nous avons mimé cette situation chez Podospora anserina en exprimant le cDNA humain PMP70 dans un mutant pex2. Cette étude a permis de mettre en évidence qu'une restauration partielle de l'assemblage des peroxisomes conduisait à une restauration partielle du développement sexué. Ces premiers résultats confirment que le défaut de développement observé est bien la conséquence d'un disfonctionnement peroxysomal. Le premier transporteur ABC peroxysomal de P. anserina a été cloné et séquencé. Cette année, j'ai pu construire la souche délétée et celle surexprimant ce gène. L'étude de l'effet de la délétion ainsi que la surexpression sur la physiologie de P. anserina doit maintenant être réalisée, une analyse de certaines fonctions métaboliques (comme la dégradation des acides gras à très longue chaîne) va être effectuée. L'analyse des peroxysomes dans cette souche délétée au niveau qualitatif et quantitatif sera également menée par des méthodes de cytologie (immunofluorescence), et enfin j'étudierai les conséquences de la délétion de ce gène sur le développement sexué de P. anserina. J'effectue actuellement le clonage de l'autre transporteur ABC peroxysomal (il en existe probablement deux chez P. anserina), et le même type d'étude sera envisagé pour ce gène. Il sera aussi important d'étudier les conséquences de la double délétion de ces transporteurs ABC peroxysomaux sur le développement sexué.Peroxisomes play essential roles in cellular metabolism. Their importance is exemplified by the existence of severe (and often lethal) human disorders in which one or more peroxisomal functions are impaired. In our laboratory, the filamentous fungus Podospora anserina is used as a model system to study different biological processes. In this fungus, we have previously observed that the peroxisome assembly pex2 mutants (Zellweger Syndrome in humans) are impaired in sexual differentiation (Berteaux-Lecellier et al., 1995). To confirm this unexpected link between peroxisome and sexual development in P. anserina, we took advantage of the following experiments. In mammalian pex2 mutant cells lines, overexpression of one of the peroxisomal ABC transporters PMP70 or ALDP restores peroxisome assembly (Braiterman et al., 1998). Until now, the mechanism of this suppression remains unclear. We have shown that expression of the human PMP70 cDNA in a P. anserina pex2 mutant strain partially restores both peroxisome biogenesis, as it does in a mammalian pex2 mutant cell line, and also sexual differentiation (Boisnard et al., submitted). This heterologous suppression ascertains a role for peroxisomes in sexual development in this fungus. Interestingly, our study has also disclosed an unexpected detrimental defect of hPMP70 cDNA expression in a wild-type background (pex2+): it leads to an abnormal distribution of both nuclei and peroxisomes during sexual differentiation. This last discovery prompted us to clone the two "expected" genes encoding peroxisomal ABC transporters in P. anserina. These genes have been sequenced and the experiments performed with the first peroxisomal ABC transporter ABC1, which display 35% identity with PMP70, confirm the results obtained with the human cDNA. Further studies are in progress with the second gene ABC2 and should help to understand the involvement of peroxisomal ABC transporters in differentiation as well as their physiological role(s).ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF

    PEROXYSOMES ET MITOCHONDRIES (DIFFERENCIATION CELLULAIRE ET REGULATION RETROGRADE CHEZ PODOSPORA ANSERINA)

    No full text
    LE ROLE QUE PEUVENT JOUER LES ORGANITES CELLULAIRES, EN PARTICULIER LES PEROXYSOMES ET LES MITOCHONDRIES, DANS LE DEVENIR CELLULAIRE EST ASSEZ PEU CONNU. L'ETUDE DES MUTANTS PEX2 (CAR1), CHEZ LE CHAMPIGNON FILAMENTEUX PODOSPORA ANSERINA AVAIT, DANS UN PREMIER TEMPS, SUGGERE QUE LES PEROXYSOMES POURRAIENT JOUER UN ROLE ESSENTIEL DANS LA DIFFERENCIATION. EN EFFET, CES MUTANTS, DEPOURVUS DE PEROXYSOMES ET INCAPABLES DE CROITRE SUR UN MILIEU CONTENANT DE L'ACIDE OLEIQUE COMME SEULE SOURCE DE CARBONE, SONT EGALEMENT INCAPABLES D'EFFECTUER LA TRANSITION ENTRE L'ETAT MITOTIQUE ET L'ETAT MEIOTIQUE. AFIN DE CONFIRMER LE LIEN ENTRE LES PEROXYSOMES ET LA DIFFERENCIATION, DES SUPPRESSEURS METABOLIQUES DES MUTANTS PEX2 ONT ETE RECHERCHES. SOIXANTE TROIS SUPPRESSEURS EXTRAGENIQUES, AFFECTANT SIX GENES (SUO), ONT AINSI PU ETRE ISOLES. ILS SUPPRIMENT TOUS LE DEFAUT DE CROISSANCE DES MUTANTS PEX2, MAIS AUCUN NE SUPPRIME COMPLETEMENT LEUR DEFAUT DE DIFFERENCIATION. LEURS PROPRIETES PHENOTYPIQUES SUGGERENT QUE DIFFERENTS MECANISMES SONT MIS EN PLACE POUR CES SUPPRESSIONS. JE ME SUIS PARTICULIEREMENT INTERESSEE AU GENE SUO4, LE SEUL DONT DES MUTATIONS, EN CONTEXTE PEX2 +, ENTRAINENT UN DEFAUT SEXUE : LES MUTANTS SUO4 SONT PRINCIPALEMENT BLOQUES AU STADE DIFFUS, PROPHASE DE PREMIERE DIVISION DE MEIOSE. CE GENE A ETE CLONE, IL CODE LA CITRATE SYNTHASE MITOCHONDRIALE (CIT1). CES MUTANTS SOULEVENT TROIS QUESTIONS MAJEURES. COMMENT PEUVENT-ILS ETRE VIABLES ? COMMENT LES MUTATIONS SUPPRIMENT-ELLES LES DEFAUTS DES MUTANTS PEX2 ET ENFIN POURQUOI ONT-ELLES DES EFFETS SUR LA REPRODUCTION SEXUEE ? LES ANALYSES PHYSIOLOGIQUES ET BIOCHIMIQUES SUGGERENT L'EXISTENCE D'UN MECANISME DE COMMUNICATION ENTRE LES MITOCHONDRIES ET LES PEROXYSOMES RESSEMBLANT A CELUI IDENTIFIE CHEZ LA LEVURE : LA REGULATION RETROGRADE. D'AUTRE PART, CETTE ETUDE A EGALEMENT PERMIS D'IDENTIFIER LES PREMIERS MUTANTS BLOQUES AU STADE DIFFUS NOUS CONDUISANT A PROPOSER UN ROLE CLE DE CE STADE CHEZ LES EUCARYOTES.ORSAY-PARIS 11-BU Sciences (914712101) / SudocSudocFranceF

    Lack of mitochondrial citrate synthase discloses a new meiotic checkpoint in a strict aerobe

    No full text
    Mitochondrial citrate synthase (mCS) is the initial enzyme of the tricarboxylic acid (TCA) cycle. Despite the key position of this protein in respiratory metabolism, very few studies have addressed the question of the effects of the absence of mCS in development. Here we report on the characterization of 15 point mutations and a complete deletion of the cit1 gene, which encodes mCS in the filamentous fungus Podospora anserina. This gene was identified genetically through a systematic search for suppressors of the metabolic defect of the peroxisomal pex2 mutants. The cit1 mutant strains exhibit no visible vegetative defects. However, they display an unexpected developmental phenotype: in homozygous crosses, cit1 mutations impair meiosis progression beyond the diffuse stage, a key stage of meiotic prophase. Enzyme assays, immunofluorescence and western blotting experiments show that the presence of the mCS protein is more important for completion of meiosis than its well-known enzyme activity. Combined with observations made in budding yeast, our data suggest that there is a general metabolic checkpoint at the diffuse stage in eukaryotes

    A nonmammalian homolog of the PAF7 gene(Zellweger syndrome) discovered as a gene involved in caryogamy in the fungus Podospora anserina

    Get PDF
    SummaryThe car1 gene of the filamentous fungus Podosporaanserina was cloned by complementation of a mutant defective for caryogamy (nuclear fusion), a process required for sexual sporulation. This gene encodes a protein that shows similarity to the mammalian PAF1 protein (Zellweger syndrome). Besides sequence similarity, the two proteins share a transmembrane domain and the same type of zinc finger motif. A combination of molecular, physiological, genetical, and ultrastructural approaches gave evidence that the P. anserina car1 protein is actually a peroxisomal protein. This study shows that peroxisomes are required at a specific stage of sexual development, at least in P. anserina, and that a functional homolog of the PAF1 gene is present in a lower eucaryote
    corecore