18 research outputs found

    A Differential Redox Regulation or the Pathways Metabolizing Glyceraldehyde-3-phosphate Tunes the Production of Reducing Power in the Cytosol of Plant Cells

    Get PDF
    Adaptation to aerobic life leads organisms to sense reactive oxygen species and use the signal for coordination of the entire metabolism. Glycolysis in plants is a particular network where specific steps, like oxidation of glyceraldehydes-3-phosphate (Ga3P), are critical in order for it to function. The triose-phosphate can be converted into 3-phosphoglycerate through the phosphorylating Ga3P dehydrogenase (Ga3PDHase, EC 1.2.1.12) producing ATP and NADH, or via the non-phosphorylating enzyme (np-Ga3PDHase; EC 1.2.1.9) generating NADPH. In this work we found redox regulation to be a posttranslational mechanism allowing the fine-tuning of the triose-phosphate fate. Both enzymes were inactivated after oxidation by reactive oxygen and nitrogen species. Kinetic studies determined that Ga3PDHase is marked (63-fold) more sensitive to oxidants than np-Ga3PDHase. Thioredoxin-h reverted the oxidation of both enzymes (although with differences between them), suggesting a physiological redox regulation. The results support a metabolic scenario where the cytosolic triose-phosphate dehydrogenases are regulated under changeable redox conditions. This would allow coordinate production of NADPH or ATP through glycolysis, with oxidative signals triggering reducing power synthesis in the cytosol. The NADPH increment would favor antioxidant responses to cope with the oxidative situation, while the thioredoxin system would positively feedback NADPH production by maintaining np-Ga3PDHase at its reduced active state.Fil: Piattoni, Claudia Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Santa Fe. Instituto de Agrobiotecnologia del Litoral; Argentina;Fil: Guerrero, Sergio Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Santa Fe. Instituto de Agrobiotecnologia del Litoral; Argentina;Fil: Iglesias, Alberto Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Santa Fe. Instituto de Agrobiotecnologia del Litoral; Argentina

    Redox Regulation of UDP-glucose Pyrophosphorylase from Entamoeba histolytica.

    Get PDF
    Amoebiasis is an intestinal infection caused by the human pathogen Entamoeba histolytica and representing the third leading cause of death by parasites in the world. Host-parasite interactions mainly involve anchored glycoconjugates localized in the surface of the parasitic cell. In protozoa, synthesis of structural oligo- and polysaccharides occurs via UDP-glucose, generated in a reaction catalyzed by UDP-glucose pyrophosphorylase. We report the molecular cloning of the gene coding for this enzyme from genomic DNA of E. histolytica and its recombinant expression in Escherichia coli cells. The purified enzyme was kinetically characterized, catalyzing UDP-glucose synthesis and pyrophosphorolysis with V(max) values of 95 U/mg and 3 U/mg, respectively, and affinity for substrates comparable to those found for the enzyme from other sources. Enzyme activity was affected by redox modification of thiol groups. Different oxidants, including diamide, hydrogen peroxide and sodium nitroprusside inactivated the enzyme. The process was completely reverted by reducing agents, mainly cysteine, dithiothreitol, and thioredoxin. Characterization of the enzyme mutants C94S, C108S, C191S, C354S, C378S, C108/378S, M106S and M106C supported a molecular mechanism for the redox regulation. Molecular modeling confirmed the role of specific cysteine and methionine residues as targets for redox modification in the entamoebic enzyme. Our results suggest that UDP-glucose pyrophosphorylase is a regulated enzyme in E. histolytica. Interestingly, results strongly agree with the occurrence of a physiological redox mechanism modulating enzyme activity, which would critically affect carbohydrate metabolism in the protozoon.Fil: Martínez, Lucila Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Piattoni, Claudia Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Garay, Alberto. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Departamento de Física; ArgentinaFil: Rodrigues, Daniel Enrique. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas; ArgentinaFil: Guerrero, Sergio Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Iglesias, Alberto Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentin

    Heterologous expression and kinetic characterization of the α β and αβ blend of the PPi-dependent phosphofructokinase from Citrus sinensis

    Get PDF
    This work reports the molecular cloning and heterologous expression of the genes coding for α and β subunits of pyrophosphate-dependent phosphofructokinase (PPi-PFK) from orange. When expressed individually, both recombinant subunits were produced as highly purified monomeric proteins able to phosphorylate fructose-6-phosphate at the expenses of PPi (specific activity of 0.075 and 0.017 units. mg −1 for α and β subunits, respectively). On the other hand, co-expression rendered a α 3 β 3 hexamer with specific activity three orders of magnitude higher than the single subunits. All the conformations of the enzyme were characterized with respect to its kinetic properties and sensitivity to the regulator fructose-2,6-bisphosphate. A thorough review of current knowledge on the matter indicates that this is the first report of the recombinant production of active plant PPi-PFK and the characterization of its different conformations. This is a main contribution for future studies focused to better understand the enzyme properties and how it accomplishes its relevant role in plant metabolism.Fil: Muchut, Robertino José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Piattoni, Claudia Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Margarit, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaFil: Tripodi, Karina Eva Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaFil: Podesta, Florencio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro de Estudios Fotosintéticos y Bioquímicos. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Centro de Estudios Fotosintéticos y Bioquímicos; ArgentinaFil: Iglesias, Alberto Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentin

    Oligomerization, Membrane Association, and in Vivo Phosphorylation of Sugarcane UDP-glucose Pyrophosphorylase

    Get PDF
    Sugarcane is a monocot plant that accumulates sucrose to levels of up to 50% of dry weight in the stalk. The mechanisms that are involved in sucrose accumulation in sugarcane are not well understood, and little is known with regard to factors that control the extent of sucrose storage in the stalks. UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) is an enzyme that produces UDP-glucose, a key precursor for sucrose metabolism and cell wall biosynthesis. The objective of this work was to gain insights into the ScUGPase-1 expression pattern and regulatory mechanisms that control protein activity. ScUGPase-1 expression was negatively correlated with the sucrose content in the internodes during development, and only slight differences in the expression patterns were observed between two cultivars that differ in sucrose content. The intracellular localization of ScUGPase-1 indicated partial membrane association of this soluble protein in both the leaves and internodes. Using a phospho-specific antibody, we observed that ScUGPase-1 was phosphorylated in vivo at the Ser-419 site in the soluble and membrane fractions from the leaves but not from the internodes. The purified recombinant enzyme was kinetically characterized in the direction of UDP-glucose formation, and the enzyme activity was affected by redox modification. Preincubation with H2O2 strongly inhibited this activity, which could be reversed by DTT. Small angle x-ray scattering analysis indicated that the dimer interface is located at the C terminus and provided the first structural model of the dimer of sugarcane UGPase in solution.Fil: Soares, Jose Sergio M.. Universidade Estadual de Campinas. Instituto de Biologia. Departamento de Genética, Evolução e Bioagentes; BrasilFil: Gentile, Agustina. Universidade Estadual de Campinas. Instituto de Biologia. Departamento de Genética, Evolução e Bioagentes; BrasilFil: Scorsato, Valeria. Universidade Estadual de Campinas. Instituto de Química. Laboratório de Biologia Estrutural e Cristalografia; BrasilFil: Lima, Aline da C.. Universidade Estadual de Campinas. Instituto de Química. Laboratório de Biologia Estrutural e Cristalografia; BrasilFil: Kiyota, Eduardo. Universidade Estadual de Campinas. Instituto de Química. Laboratório de Biologia Estrutural e Cristalografia; BrasilFil: Santos, Marcelo Leite Dos . Universidade Federal do Sergipe. Centro de Ciências Exatas e Tecnologia. Núcleo de Química; BrasilFil: Piattoni, Claudia Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Agrobiotecnologia del Litoral; Argentina. Universidad Nacional del Litoral; ArgentinaFil: Huber, Steven C.. University of Illinois at Urbana-Champaign. Department of Agriculture Agricultural Research Service, and Department of Plant Biology; Estados UnidosFil: Aparicio, Ricardo. Universidade Estadual de Campinas. Instituto de Química. Laboratório de Biologia Estrutural e Cristalografia; BrasilFil: Menossi, Marcelo. Universidade Estadual de Campinas. Instituto de Biologia. Departamento de Genética, Evolução e Bioagentes; Brasi

    Plant biochemical mechanisms of oxidative stress under control conditions

    No full text
    The presence of O2 in the earth?s atmosphere originated over 2.2 billion years ago as a consequence of the evolution of oxygenic photosynthetic activity by cyanobacteria. After this, several organisms began to evolve a complex redox metabolism to cope with oxidative stress, giving them the capacity not only to tolerate O2 but also to use it for metabolic transformation and biosynthesis (Halliwell, 2006; Slesak et al., 2007). It is remarkable that for aerobic organisms, O2 is both beneficial and damaging. It is beneficial in its role as an essential electron exchanger for respiration and photosynthesis, besides which O2 is widely used for signal transduction. Conversely, O2 can cause dysfunction of cell components by irreversible modifications to DNA, proteins, sugars, and lipids. Hence, there is a balance/imbalance between the two sides, which is critical for cell functionality and survival (Slesak et al., 2007; Cerny et al., 2018; Moldogazieva et al., 2018).Fil: Arias, Diego Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Piattoni, Claudia Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Guerrero, Sergio Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Iglesias, Alberto Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentin

    Glucitol Dehydrogenase from Peach (Prunus persica) Fruits is Regulated by Thioredoxin h

    Get PDF
    Glucitol (Gol) is a major photosynthetic product in plants from the Rosaceae family. Herein we report the molecular cloning, heterologous expression, and characterization of Gol dehydrogenase (GolDHase, EC 1.1.1.14) from peach (Prunus persica) fruits. The recombinant enzyme showed kinetic parameters similar to those reported for orthologous enzymes purified from apple and pear fruits. The activity of recombinant GolDHase was strongly inhibited by Cu2+ and Hg2+, suggesting that it might have cysteine residues critical for functionality. Oxidizing compounds (like diamide, hydrogen peroxide, and oxidized glutathione) inactivated the enzyme, whereas its activity was restored after incubation with reduced glutathione and thioredoxin from Escherichia coli. Recombinant thioredoxin h from peach fruits also recovered the activity of oxidized GolDHase. Our results suggest that peach fruit GolDHase could be redox regulated in vivo and this would be of relevance to determine carbon assimilation and partitioning in plants accumulating sugar alcohols.Fil: Hartman, Matias Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Agrobiotecnologia del Litoral; ArgentinaFil: Figueroa, Carlos Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Agrobiotecnologia del Litoral; ArgentinaFil: Piattoni, Claudia Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Agrobiotecnologia del Litoral; ArgentinaFil: Iglesias, Alberto Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Agrobiotecnologia del Litoral; Argentin

    Nonphosphorylating Glyceraldehyde-3-Phosphate Dehydrogenase Is Phosphorylated in Wheat Endosperm at Serine-404 by an SNF1-Related Protein Kinase Allosterically Inhibited by Ribose-5-Phosphate1[W][OA]

    Get PDF
    Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (np-Ga3PDHase) is a cytosolic unconventional glycolytic enzyme of plant cells regulated by phosphorylation in heterotrophic tissues. After interaction with 14-3-3 proteins, the phosphorylated enzyme becomes less active and more sensitive to regulation by adenylates and inorganic pyrophosphate. Here, we acknowledge that in wheat (Triticum aestivum), np-Ga3PDHase is specifically phosphorylated by the SnRK (SNF1-related) protein kinase family. Interestingly, only the kinase present in heterotrophic tissues (endosperm and shoots, but not in leaves) was found active. The specific SnRK partially purified from endosperm exhibited a requirement for Mg2+ or Mn2+ (being Ca2+ independent), having a molecular mass of approximately 200 kD. The kinase also phosphorylated standard peptides SAMS, AMARA, and SP46, as well as endogenous sucrose synthase, results suggesting that it could be a member of the SnRK1 subfamily. Concurrently, the partially purified wheat SnRK was recognized by antibodies raised against a peptide conserved between SnRK1s from sorghum (Sorghum bicolor) and maize (Zea mays) developing seeds. The wheat kinase was allosterically inhibited by ribose-5-phosphate and, to a lesser extent, by fructose-1,6-bisphosphate and 3-phosphoglycerate, while glucose-6-phosphate (the main effector of spinach [Spinacia oleracea] leaves, SnRK1) and trehalose-6-phosphate produced little or no effect. Results support a distinctive allosteric regulation of SnRK1 present in photosynthetic or heterotrophic plant tissues. After in silico analysis, we constructed two np-Ga3PDHase mutants, S404A and S447A, identifying serine-404 as the target of phosphorylation. Results suggest that both np-Ga3PDHase and the specific kinase could be under control, critically affecting the metabolic scenario involving carbohydrates and reducing power partition and storage in heterotrophic plant cells

    New pieces to the carbon metabolism puzzle of Nitrosomonas europaea: Kinetic characterization of glyceraldehyde-3 phosphate and succinate semialdehyde dehydrogenases

    No full text
    Nitrosomonas europaea is a chemolithotroph that obtains energy through the oxidation of ammonia to hydroxylamine while assimilates atmospheric CO 2 to cover the cell carbon demands for growth. This microorganism plays a relevant role in the nitrogen biogeochemical cycle on Earth but its carbon metabolism remains poorly characterized. Based on sequence homology, we identified two genes (cbbG and gabD) coding for redox enzymes in N. europaea. Cloning and expression of the genes in Escherichia coli, allowed the production of recombinant enzymes purified to determine their biochemical properties. The protein CbbG is a glyceraldehyde-3-phosphate (Ga3P) dehydrogenase (Ga3PDHase) catalyzing the reversible oxidation of Ga3P to 1,3-bis-phospho-glycerate (1,3bisPGA), using specifically NAD + /NADH as cofactor. CbbG showed ∼6-fold higher K m value for 1,3bisPGA but ∼5-fold higher k cat for the oxidation of Ga3P. The protein GabD irreversibly oxidizes Ga3P to 3Pglycerate using NAD + or NADP + , thus resembling a non-phosphorylating Ga3PDHase. However, the enzyme showed ∼6-fold higher K m value and three orders of magnitude higher catalytic efficiency with succinate semialdehyde (SSA) and NADP + . Indeed, the GabD protein identity corresponds to an SSA dehydrogenase (SSADHase). CbbG seems to be the only Ga3PDHase present in N. europaea; which would be involved in reducing triose-P during autotrophic carbon fixation. Otherwise, in cells grown under conditions deprived of ammonia and oxygen, the enzyme could catalyze the glycolytic step of Ga3P oxidation producing NADH. As an SSADHase, GabD would physiologically act producing succinate and preferentially NADPH over NADH; thus being part of an alternative pathway of the tricarboxylic acid cycle converting α-ketoglutarate to succinate. The properties determined for these enzymes contribute to better identify metabolic steps in CO 2 assimilation, glycolysis and the tricarboxylic acid cycle in N. europaea. Results are discussed in the framework of metabolic pathways that launch biosynthetic intermediates relevant in the microorganism to develop and fulfill its role in nature.Fil: Corregido, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Asención Diez, Matías Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Iglesias, Alberto Alvaro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Piattoni, Claudia Vanesa. Instituto Pasteur de Montevideo; Urugua

    On the occurrence of thioredoxin in Trypanosoma cruzi

    No full text
    The full coding sequence for thioredoxin from Trypanosoma cruzi (TcTRX) strain Tulahuen O has been cloned into the pRSETA vector. The protein was expressed in Escherichia coli with an N-terminal extension of six histidine residues for purification through metal ion chromatography. The biological activity of recombinant TcTRX was proved utilizing the insulin reduction assay. Amino acid sequence alignment indicates a high identity of TcTRX with thioredoxins from different sources. Immunocytochemistry assays showed that TcTRX is present in epimastigote forms of T. cruzi, thus, indicating that the gene is expressed in vivo, rather than being a pseudogene. The in vivo occurrence of TcTRX points out the necessity of considering this protein as a molecular component of the redox metabolism in trypanosomatids.Fil: Piattoni, Claudia Vanesa. Universidad Nacional del Litoral; ArgentinaFil: Blancato, Victor Sebastian. Universidad Nacional del Litoral; ArgentinaFil: Miglietta, Hilario. Universidad Nacional del Litoral; ArgentinaFil: Iglesias, Alberto Alvaro. Universidad Nacional del Litoral; ArgentinaFil: Guerrero, Sergio Adrian. Universidad Nacional del Litoral; Argentin
    corecore