299 research outputs found

    Muon capture on light nuclei

    Full text link
    This work investigates the muon capture reactions 2H(\mu^-,\nu_\mu)nn and 3He(\mu^-,\nu_\mu)3H and the contribution to their total capture rates arising from the axial two-body currents obtained imposing the partially-conserved-axial-current (PCAC) hypothesis. The initial and final A=2 and 3 nuclear wave functions are obtained from the Argonne v_{18} two-nucleon potential, in combination with the Urbana IX three-nucleon potential in the case of A=3. The weak current consists of vector and axial components derived in chiral effective field theory. The low-energy constant entering the vector (axial) component is determined by reproducting the isovector combination of the trinucleon magnetic moment (Gamow-Teller matrix element of tritium beta-decay). The total capture rates are 393.1(8) s^{-1} for A=2 and 1488(9) s^{-1} for A=3, where the uncertainties arise from the adopted fitting procedure.Comment: 6 pages, submitted to Few-Body Sys

    Electromagnetic structure of A=2 and 3 nuclei in chiral effective field theory

    Get PDF
    The objectives of the present work are twofold. The first is to address and resolve some of the differences present in independent, chiral-effective-field-theory (\chiEFT) derivations up to one loop, recently appeared in the literature, of the nuclear charge and current operators. The second objective is to provide a complete set of \chiEFT predictions for the structure functions and tensor polarization of the deuteron, for the charge and magnetic form factors of 3He and 3H, and for the charge and magnetic radii of these few-nucleon systems. The calculations use wave functions derived from high-order chiral two- and three-nucleon potentials and Monte Carlo methods to evaluate the relevant matrix elements. Predictions based on conventional potentials in combination with \chiEFT charge and current operators are also presented. There is excellent agreement between theory and experiment for all these observables for momentum transfers up to q< 2.0-2.5 (1/fm); for a subset of them, this agreement extends to momentum transfers as high as q~5-6 (1/fm). A complete analysis of the results is provided.Comment: 34 pages, Revte

    Minimally non-local nucleon-nucleon potentials with chiral two-pion exchange including Δ\Delta's

    Get PDF
    We construct a coordinate-space chiral potential, including Δ\Delta-isobar intermediate states in its two-pion-exchange component. The contact interactions entering at next-to-leading and next-to-next-to-next-to-leading orders (Q2Q^2 and Q4Q^4, respectively, QQ denoting generically the low momentum scale) are rearranged by Fierz transformations to yield terms at most quadratic in the relative momentum operator of the two nucleons. The low-energy constants multiplying these contact interactions are fitted to the 2013 Granada database, consisting of 2309 pppp and 2982 npnp data (including, respectively, 148 and 218 normalizations) in the laboratory-energy range 0--300 MeV. For the total 5291 pppp and npnp data in this range, we obtain a χ2\chi^2/datum of roughly 1.3 for a set of three models characterized by long- and short-range cutoffs, RLR_{\rm L} and RSR_{\rm S} respectively, ranging from (RL,RS)=(1.2,0.8)(R_{\rm L},R_{\rm S})=(1.2,0.8) fm down to (0.8,0.6)(0.8,0.6) fm. The long-range (short-range) cutoff regularizes the one- and two-pion exchange (contact) part of the potential.Comment: 32 pages, 19 figures, accepted for publication as a Regular Article in Physical Review

    Muon capture on deuteron and 3He

    Full text link
    The muon capture reactions 2H(\mu^-,\nu_\mu)nn and 3He(\mu^-,\nu_\mu)3H are studied with conventional or chiral realistic potentials and consistent weak currents. The initial and final A=2 and 3 nuclear wave functions are obtained from the Argonne v18 or chiral N3LO two-nucleon potential, in combination with, respectively, the Urbana IX or chiral N2LO three-nucleon potential in the case of A=3. The weak current consists of polar- and axial-vector components. The former are related to the isovector piece of the electromagnetic current via the conserved-vector-current hypothesis. These and the axial currents are derived either in a meson-exchange or in a chiral effective field theory (chiEFT) framework. There is one parameter (either the N-to-\Delta axial coupling constant in the meson-exchange model, or the strength of a contact term in the chiEFT model) which is fixed by reproducing the Gamow-Teller matrix element in tritium beta-decay. The model dependence relative to the adopted interactions and currents (and cutoff sensitivity in the chiEFT currents) is weak, resulting in total rates of 392.0 +/- 2.3 Hz for A=2, and 1484 +/- 13 Hz for A=3, where the spread accounts for this model dependence.Comment: 15 pages, 1 figure, submitted to Phys. Rev.

    Partial muon capture rates in A=3A=3 and A=6A=6 nuclei with chiral effective field theory

    Get PDF
    Searches for neutrinoless-double beta decay rates are crucial in addressing questions within fundamental symmetries and neutrino physics. The rates of these decays depend not only on unknown parameters associated with neutrinos, but also on nuclear properties. In order to reliably extract information about the neutrino, one needs an accurate treatment of the complex many-body dynamics of the nucleus. Neutrinoless-double beta decays take place at momentum transfers on the order of 100 MeV/cc and require both nuclear electroweak vector and axial current matrix elements. Muon capture, a process in the same momentum transfer regime, has readily available experimental data to validate these currents. In this work, we present results of {\it ab initio} calculations of partial muon capture rates for 3^3He and 6^6Li nuclei using variational and Green's Function Monte Carlo computational methods. We estimate the impact of the three-nucleon interactions, the cutoffs used to regularize two-nucleon (2N2N) interactions, and the energy range of 2N2N scattering data used to fit these interactions.Comment: 10 pages, 5 figures including supplemental material; Re-analyzed GFMC 3^3He muon capture with updated wave functions, conclusions unchange

    Partial Muon Capture Rates in A = 3 and A = 6 Nuclei with Chiral Effective Field Theory

    Get PDF
    Searches for neutrinoless double-β decay rates are crucial in addressing questions within fundamental symmetries and neutrino physics. The rates of these decays depend not only on unknown parameters associated with neutrinos, but also on nuclear properties. In order to reliably extract information about the neutrino, one needs an accurate treatment of the complex many-body dynamics of the nucleus. Neutrinoless double-β decays take place at momentum transfers on the order of 100MeV /c and require both nuclear electroweak vector and axial current matrix elements. Muon capture, a process in the same momentum transfer regime, has readily available experimental data to validate these currents. In this Letter, we present results of ab initio calculations of partial muon capture rates for 3He and 6Li nuclei using variational and Green\u27s function Monte Carlo computational methods. We estimate the impact of the three-nucleon interactions, the cutoffs used to regularize two-nucleon (2N) interactions, and the energy range of 2N scattering data used to fit these interactions

    A Library Approach to the Development of BenzaPhos, Highly Efficient Chiral Supramolecular Ligands for Asymmetric Hydrogenation

    Get PDF
    A library of chiral supramolecular ligands named BenzaPhos, of straightforward preparation (two steps from commercial or readily available starting materials) and modular structure, was designed and synthesized. The ligands were screened in the search of new rhodium catalysts for the enantioselective hydrogenation of several benchmark and industrially relevant substrates. Once a series of hits were identified, structural modifications were introduced on three of the best ligands and a small second-generation library was created. Members of the latter showed outstanding levels of activity and enantioselectivity in the hydrogenation of challenging olefins such as enamide S4 and beta-dehydroamino ester S5 (> 99% ee: best value ever reported in both cases). A series of control experiments were undertaken in order to clarify the role of hydrogen bonding in determining the catalytic properties of the new ligands. The results of these experiments, together with those of computational studies carried out on four dihydride complexes involved in the catalytic hydrogenation of substrate S4, strongly suggest that a substrate orientation takes place in the catalytic cycle by formation of a hydrogen bond between the ligand amide oxygen and the substrate amide NH

    Muon capture on deuteron using local chiral potentials

    Get PDF
    The muon capture reaction μ−+d→n+n+νμ\mu^- + d \rightarrow n + n + \nu_{\mu} in the doublet hyperfine state is studied using nuclear potentials and consistent currents derived in chiral effective field theory, which are local and expressed in coordinate-space (the so-called Norfolk models). Only the largest contribution due to the 1S0^1S_0 nnnn scattering state is considered. Particular attention is given to the estimate of the theoretical uncertainty, for which four sources have been identified: (i) the model dependence, (ii) the chiral order convergence for the weak nuclear current, (iii) the uncertainty in the single-nucleon axial form factor, and (iv) the numerical technique adopted to solve the bound and scattering A=2A=2 systems. This last source of uncertainty has turned out essentially negligible. The 1S0^1S_0 doublet muon capture rate ΓD(1S0)\Gamma^D(^1S_0) has been found to be ΓD(1S0)=255.8(0.6)(4.4)(2.9)\Gamma^D(^1S_0)=255.8(0.6)(4.4)(2.9) s−1^{-1}, where the three errors come from the first three sources of uncertainty. The value for ΓD(1S0)\Gamma^D(^1S_0) obtained within this local chiral framework is compared with previous calculations and found in very good agreement.Comment: 33 pages, 3 figure
    • …
    corecore