93 research outputs found

    STRATIGRAPHY, SEDIMENTOLOGY AND SYNDEPOSITIONAL TECTONICS OF THE JURASSIC-CRETACEOUS SUCCESSION AT THE TRANSITION BETWEEN PROVENÇAL AND DAUPHINOIS DOMAINS (MARITIME ALPS, NW ITALY)

    Get PDF
    The Provençal and Dauphinois Mesozoic successions cropping out at the southeastern margin of the Argentera Massif (Maritime Alps, NW Italy) were deposited at the transition between the Provençal platform and the Dauphinois basin, marked in the study area by a partly preserved Mesozoic palaeoescarpment. These successions show important lateral variations occurring over relatively short distances, probably related to syndepositional tectonics. Different stratigraphic intervals of the pelagic-hemipelagic Dauphinois succession contain resedimented deposits, made up of both intra- and extrabasinal material, which provide a twofold evidence of syndepositional tectonics indicating both tectonically-triggered gravitational processes and a tectonically-driven evolution of the source areas. Two stages of syndepositional tectonics have been recognized: the first in the earliest Cretaceous, which is related to the deposition of carbonate breccias in the Dauphinois succession and to hydrothermal dolomitization of the Middle Triassic-Jurassic Provençal carbonates, and the second in the Late Cretaceous, which triggered the deposition of different detrital lithozones in the Upper Cretaceous Puriac Limestone. The cited evidence indicates that syndepositional tectonics continued to influence the evolution of the Alpine Tethys European passive margin long after the Late Triassic-Early Jurassic syn-rift stage, which caused the differentiation between the Dauphinois basin and the Provençal platform

    From field analysis to nanostructural investigation. A multidisciplinary approach to describe natural occurrence of asbestos in view of hazard assessment

    Get PDF
    The environmental impact of natural occurrences of asbestos (NOA) and asbestos-like minerals is a growing concern for environmental protection agencies. The lack of shared sampling and analytical procedures hinders effectively addressing this issue. To investigate the hazard posed by NOA, a multidisciplinary approach that encompasses geology, mineralogy, chemistry, and toxicology is proposed and demonstrated here, on a natural occurrence of antigorite from a site in Varenna Valley, Italy. Antigorite is, together with chrysotile asbestos, one of the serpentine polymorphs and its toxicological profile is still under debate. We described field and petrographic analyses required to sample a vein and to evaluate the NOA-hazard. A combination of standardized mechanical stress and automated morphometrical analyses on milled samples allowed to quantify the asbestoslike morphology. The low congruent solubility in acidic simulated body fluid, together with the toxicity-relevant surface reactivity due to iron speciation, signalled a bio-activity similar or even greater to that of chrysotile. Structural information on the genetic mechanism of antigorite asbestos-like fibres in nature were provided. Overall, the NOA site was reported to contain veins of asbestos-like antigorite and should be regarded as source of potentially toxic fibres during hazard assessment procedure
    • …
    corecore