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ABSTRACT 

In the central part of the External Ligurian Briançonnais in the Ligurian Alps (NW Italy), a 

large and diverse set of stratigraphic, sedimentologic and petrographic data provides evidence 

for the occurrence of Cretaceous kilometre-scale palaeoescarpments. These 

palaeoescarpments consist of irregular erosional surfaces more or less deeply incising a 

stratigraphic succession that ranges from Upper Jurassic limestones down to Permian 

volcano-sedimentary rocks; at present they are partly exposed and partly covered by Upper 

Cretaceous−Upper Eocene sediments, and patchily encrusted by authigenic minerals. 

Palaeoescarpments resulted from the remodelling of palaeofault planes by gravity-driven rock 

fall processes, whose products are represented by breccias and metre- to tens of metres-sized 

blocks of Upper Jurassic limestones either lying directly over the surfaces or embedded 

within onlapping sediments. Palaeofault-related tensional stresses are also documented by the 

occurrence of subvertical sedimentary neptunian dykes and tabular breccia bodies, interpreted 

as fault rocks and locally bearing evidence of the uprise of hot, overpressured fluids. Fault 
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activity started during the Aptian, with most of the displacement - which locally reached 

several hundred metres - accomplished during the Late Cretaceous, resulting in deep morpho-

structural depressions that, by Eocene times, were not yet levelled out. Two systems of 

kilometre-long palaeoescarpments are recognized and mapped, suggesting the existence of a 

Cretaceous kilometre-sized fault-bounded basin limited to the north and south by two main 

transcurrent zones, presently striking E−W and internally partitioned by N−S oriented east-

dipping normal faults. This type of setting could be consistent with the Western Tethys 

tectonic context, in which the Ligurian Briançonnais Domain, close to the Early−Late 

Cretaceous boundary, was located at the easternmost end of a transcurrent belt connecting the 

Bay of Biscay to the Valais and Ligurian-Piedmont oceans. 

 

Keywords: palaeoescarpments, breccias, External Briançonnais, Ligurian Alps, syn-

depositional faults, Cretaceous transtensional tectonics.  

 

1. Introduction 

Synsedimentary faults play a fundamental role in controlling the geometries of basins 

on extensional continental margins, and are commonly imaged on seismic profiles where their 

extension and 3D geometry can be depicted in detail (Péron-Pinvidic et al., 2007; Afilhado et 

al., 2008). In outcrop, synsedimentary palaeofaults are commonly inferred from variations in 

the thickness of sedimentary bodies and the co-occurrence of several features such as 

neptunian dykes (Montenat et al., 1991; Winterer et al., 1991; Winterer and Sarti, 1994), 

megabreccias (Böhm et al., 1995; Spence and Tucker, 1997; Aubrecht and Szulc, 2006) and 

soft sediment deformation (e.g. seismites: Montenat et al., 2007). Direct observation of 

palaeoescarpments - morphological features resulting from surface exposure and erosion of 

fault planes (Carminati and Santantonio, 2005) - is, however, more rarely reported (Surlyk 
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and Hurst, 1983; Bice and Stewart, 1985; Surlyk and Ineson, 1992; Bosellini et al., 1993; 

Santantonio, 1993, 1994; Purser and Plaziat, 1998; Di Stefano et al., 2002; Montenat et al., 

2002; Morsilli et al., 2002; Gill et al., 2004; Carminati and Santantonio, 2005; Rusciadelli, 

2005; Bertok and Martire, 2009).  

The aim of the present paper is to describe Cretaceous kilometre-scale 

palaeoescarpments, related to the activity of faults with vertical displacements in the order of 

hundreds of metres, that occur in the central part of the External Ligurian Briançonnais in the 

Ligurian Alps. The Ligurian Briançonnais is the southernmost sector of the Briançonnais 

Domain, a major palaeogeographical and tectonic unit in the Alpine orogen which has been 

interpreted as part of the northern continental margin of the Western Tethys (Faure Muret and 

Fallot, 1954; Amaudric du Chaffaut et al., 1984; Vanossi et al., 1984; Lemoine et al., 1986; 

Lemoine and Trümpy, 1987; Lanteaume et al., 1990). The Ligurian Briançonnais 

Mesozoic−Cenozoic stratigraphic succession reflects different evolutionary stages of an 

extensional margin, from its initiation up to its final involvement in the Adria - Europe 

collision. According to the literature (e.g. Boillot et al., 1984), the Ligurian Briançonnais was 

mainly structured during the Late Triassic−Early Jurassic rifting phase of the Western Tethys 

(which was characterized by intense extensional tectonics giving rise to a horst-and-graben 

structure) and was followed during the Middle−Late Jurassic and Cretaceous by a post-rift 

phase marked by thermal subsidence and the end of extensional tectonics. However, this 

scenario has recently been questioned by several authors who have documented the 

occurrence of extensional synsedimentary tectonics during the Middle−Late Jurassic (Claudel 

and Dumont, 1999; Bertok et al., 2011). In the present study, geometric, stratigraphic and 

sedimentologic evidence is provided at all scales, allowing the documentation of intense fault 

activity during the Cretaceous and the evaluation of the associated displacements. The 
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significance of this Cretaceous extensional tectonic activity on a more regional scale and in 

the frame of the Western Tethys geodynamic evolution is also discussed. 

2. Geological setting 

The Ligurian Alps are a tectonic stack of four main groups of units which have always 

been assumed to correspond to four adjacent main Mesozoic palaeogeographical domains: the 

Dauphinois and Ligurian Briançonnais domains, which were part of the European continent; 

the Pre-Piedmont domain, which was the margin of the European continent; and the 

Piedmont-Ligurian domain, which represents the contiguous oceanic basin (Vanossi et al., 

1984; Lemoine et al., 1986). These units were stacked since the Late Eocene by SW-verging 

Alpine thrusts, coeval with a subduction of continental crust along an intracontinental shear 

zone. In the present-day geometric setting, the Pre-Piedmont units rest on the Briançonnais 

units, which in turn are thrust onto the outermost Dauphinois Domain. Detached cover units 

of inner Piedmont-Ligurian domain (the so-called Helminthoides Flysch unit) overlie all these 

units (Vanossi et al., 1984; Seno et al., 2003, 2005; Bonini et al., 2010). 

The Ligurian Briançonnais Domain can be subdivided into two main sectors: internal 

and external. The Internal Ligurian Briançonnais was involved in the subduction channel up 

to a maximum depth of about 30 km, developing high-pressure blue schist metamorphic 

parageneses (Messiga et al., 1982; Goffé, 1984). The External Ligurian Briançonnais was not 

involved in subduction and developed only low grade to anchizone metamorphism (Messiga 

et al., 1982; Seno et al., 2003, 2005; Piana et al., 2009; Bonini et al., 2010). 

The study area is located in the Marguareis Alps (sensu Marazzi, 2005), and extends 

from Cima della Fascia to the NW, and Monte Mongioie and Colle del Lago dei Signori to the 

East and South, respectively. It belongs to the central part of the External Ligurian 

Briançonnais (Fig. 1), and is composed of kilometre-scale tectonic units which, although 

intensively strained at certain stratigraphic levels, did not experience significant transposition 



 
 

6 

and/or mineralogical reorganization, so that primary sedimentologic features and original 

stratigraphic relationships are preserved at all scales (Piana et al., 2009). This effect is likely 

due to the low intensity of metamorphism (anchizone) and the localization of deformation 

along the Limone-Viozene deformation zone to the south  and along the Verzera shear zone, 

that corresponds to the northern boundary of the External Ligurian Brianconnais, to the north. 

The Verzera and Limone-Viozene zones were active during all stages of Alpine deformation 

and mainly accommodated left-lateral movements in a transpressive regime (Piana et al., 

2009). 

The oldest rocks outcropping in the study area are volcanic and volcanoclastic rocks of 

Carboniferous−Permian age (Boni et al., 1971). These are overlain by a condensed 

Mesozoic−Cenozoic succession which is subdivided into several lithostratigraphic units 

systematically bounded by important hiatuses (Vanossi, 1963, 1972, 1974; Boni et al., 1971; 

Bertok et al., 2011) (Fig. 2). 

The Quarziti di Ponte di Nava (QPN) (Upper Permian?−Lower Triassic?) comprises 

littoral conglomerates and cross-bedded quartz arenites, locally interbedded with shales (up to 

110 m thick). 

The Dolomie di S. Pietro dei Monti (DSPM) (Anisian−Ladinian) consists of peritidal 

dolomites and limestones (200−400 m thick). Lualdi and Bianchi (1990) proposed that the 

mainly calcareous Anisian lower portion be distinguished, as the Formazione di Costa Losera, 

from the Ladinian dolomites of the upper portion (DSPM s.s.). The top of the DSPM is 

truncated by an erosional surface corresponding to a hiatus which spans the Upper Triassic, 

Lower Jurassic and part of the Middle Jurassic. 

The Calcari di Rio di Nava (CRN) (Bathonian) comprises monotonous dark micritic 

limestones, locally bioclastic in the lower portion, that are intensely laminated and nearly 

barren of fossils in the upper portion (about 50 m thick); conglomerates composed of Triassic 
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dolomite clasts are present locally at the base. A restricted carbonate shelf environment may 

be inferred (Bertok et al., 2011). The top is truncated by an erosional surface, locally 

associated with an angular unconformity. 

The Calcari di Val Tanarello (CVT) (Kimmeridgian?−Berriasian) consists of pelagic 

facies represented by crinoidal limestones at the base and massive light micritic limestones, 

locally exhibiting a nodular Ammonitico Rosso facies, in the upper part. The thickness of the 

CVT is variable (25−70 m).  

The Formazione di Upega (FU) (Upper Cretaceous) consists of grey marly limestones 

lithologically equivalent to the “calcschistes planctoniques” of the Briançon area (Faure 

Muret and Fallot, 1954) and interpreted as slope hemipelagic sediments. These marly 

limestones are separated from the underlying CVT by a black crust of Fe-Mn oxides, 

glauconite and phosphates containing planktonic foraminiferal assemblages referable to the 

middle Albian−Cenomanian (Bertok et al., 2011). This mineralized hard ground documents a 

prolonged hiatus encompassing the Valanginian−Aptian interval and may refer to 

palaeoceanographic changes taking place at a regional scale. This gap is in fact widespread 

throughout the Briançonnais Domain (Lualdi et al., 1989; Barfety et al., 1996), but is also 

known in other Western Tethys sectors (e.g. Lozar, 1995). Within the FU, Lanteaume et al. 

(1990) have reported the presence of foraminiferal assemblages indicating a late 

Cenomanian−Campanian age. The FU is crossed by a pervasive foliation that documents a 

strong localization of the deformation, due to the rheological contrast with respect to the 

underlying, massive carbonate formations (Piana et al., 2009). For this reason the real 

stratigraphic thickness is hard to assess and may be only approximately estimated to several 

tens of metres. 

The Calcari della Madonna dei Cancelli (CMC) (up to 30 metres thick) comprises 

foramol-type ramp massive bioclastic limestones, with abundant macroforaminifera that 
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enable the formation to be dated to the Middle Eocene (early Bartonian; Rendinella, 2006). 

These are transitionally overlain by pervasively foliated dark marls with interbedded more 

calcareous and thin beds. They were dated to the Priabonian by Lanteaume et al. (1990). An 

important discontinuity surface is present at the base with a hiatus encompassing all of the 

Paleocene and part of the Eocene. 

The Flysch Noir (FN) consists of dark argillaceous sediments, locally with turbiditic 

sandstone layers, that have been tentatively assigned to the late Priabonian (Guillaume, 1969; 

Michard and Martinotti, 2002).  

In the last decade, two papers examining the Marguareis Alps have shown that 

extensional synsedimentary tectonics did not stop at the end of the Late Triassic−Early 

Jurassic rifting phase. Bertok et al. (2011) provided a large set of sedimentologic and 

stratigraphic data pointing to the primary role of tectonics in controlling sedimentation 

patterns throughout the Middle−Late Jurassic, whereas Michard and Martinotti (2002) 

hypothesized the occurrence of kilometre-scale N−S-trending normal faults active during the 

Late Cretaceous−Eocene time interval. The present paper focuses instead on evidence for 

palaeofault activity during the Cretaceous, and on the description and characterization of the 

related palaeoescarpments. 

The Marguareis Alps have some favourable features for recognizing evidence of 

paleofault activity: very good exposure of rocks within a high altitude karstic landscape; a 

substantial preservation of the original, pre-Alpine, geometries of sedimentary bodies and 

their structural relationships; and a highly condensed Mesozoic stratigraphic succession that 

in a few hundred metres encompasses the Triassic to Upper Cretaceous interval, thus allowing 

the displacements of the syn-depositional faults to be highlighted. 

3. Methods of study 
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Geological mapping at a 1:10.000 scale was performed in order to reconstruct the 

geometries of the sedimentary bodies and the structural setting. A detailed mesostructural 

analysis was then undertaken in order to distinguish the effects of the syndepositional 

tectonics from the Cenozoic Alpine deformation related to the build up of the mountain chain. 

Detailed outcrop observation was integrated with extensive sampling, mainly aimed at the 

breccia deposits that directly overlie the palaeoescarpments. Petrographic analyses of peels 

and thin sections, and cathodoluminescence (CITL 8200 mk3 equipment operating at 

400−500 µA and 15−17 kV) enabled the nature and origin of clasts to be defined and the 

complex history of diagenesis, fracturation and cementation that has preceded and succeeded 

deposition to be unravelled. O and C stable isotope analyses were also carried out in order to 

constrain the nature of the fluids involved in the genesis of the breccia deposits. 

4. Cretaceous palaeoescarpments 

A large and diverse dataset illustrating the occurrence of palaeoescarpments onlapped 

by Upper Cretaceous sediments has been gathered. The most ubiquitous and compelling 

evidence is represented by stratigraphic contacts showing features such as unconformable 

relationships and/or an absence of lithostratigraphic units which normally occur in complete 

stratigraphic successions. The physical continuity of the palaeoescarpments is still 

recognizable and they can be traced over several kilometres. Four different palaeoescarpments 

are recognized: the E−W striking Chiusetta palaeoescarpment, and the N−S striking Passo 

delle Saline, Colle del Pas and Mongioie palaeoescarpments (Fig. 1). The following sections 

contain a description of several outcrops selected in order to provide a full picture of the main 

features of the palaeoescarpments. 

 

4.1. Chiusetta palaeoescarpment 
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4.1.1. Vallone dei Maestri (outcrop 1 in Fig. 1) 

In this region, located some hundreds of metres east of Colle del Lago dei Signori, the 

gently southward-dipping CVT limestones are cut by a surface dipping steeper than the 

bedding and incised for about ten metres (Fig. 3). This surface has a very irregular 

morphology and is locally covered by limited patches of a millimetre- to centimetre-thick 

mineralized crust - closely similar to that commonly topping the Calcari di Val Tanarello - at 

the unconformable but concordant boundary with the FU. The FU marly limestones onlap this 

surface, with beds becoming progressively thinner and steeper as they approach it (Fig. 4). 

Two blocks of CVT limestones, respectively a few metres and tens of metres in size, are 

entirely embedded within the FU a few metres above the bounding surface. The outer surface 

of the largest CVT block shows small scattered patches of a centimetre-thick mineralized 

crust. A few millimetre- to centimetre-sized cavities, with irregular morphologies and 

rounded edges, also occur (Fig. 5). The cavities’ internal walls are uniformly covered by an 

isopachous rim of finely crystalline sparry calcite cement, and they are geopetally infilled 

with a graded micritic sediment and a zoned sparry calcite cement. The polarity indicated by 

the geopetal structures is not concordant with the present position; the blocks are also crossed 

by many millimetre- to centimetre-wide randomly oriented neptunian dykes infilled with a red 

micritic sediment.  

 

4.1.2. Pian Ambrogi (outcrop 2 in Fig. 1) 

The southernmost sector of the Pian Ambrogi area is characterized by a staircase 

arrangement of the CVT (Fig. 6), separated by a gentle grassy slope covering FU marly 

limestones. The horizontal distance between the two steps is about one hundred metres, 
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corresponding to a height difference of some tens of metres. Looking closely at the boundary 

between the FU and the upper step, it can be observed that the subhorizontal CVT bedding 

planes are cut abruptly by a steep surface dipping southwestward; the latter presents a highly 

irregular morphology and is patchily covered by a centimetre-thick mineralized crust (Fig. 7). 

containing planktonic foraminiferal associations (Ticinella primula, T. raynaudi, T. roberti, 

Muricohedbergella sp., Macroglobigerinelloides sp., Rotalipora subticinensis) which point to 

a Middle to Late Albian age. The FU onlaps this surface with the same geometric 

relationships observed in the Vallone dei Maestri outcrop, and similarly metre-sized CVT 

blocks embedded within the FU have been observed. The boundary between the FU and the 

CVT at the top of the lower step is not exposed; however, the geometry of the FU allows to 

infer a tangential downlap relationship. 

 

4.1.3. Discussion 

At both sites described above, the CVT−FU contact is a primary stratigraphic 

boundary showing anomalous features, with the bounding surface - clearly highlighted by the 

authigenic mineral crust - markedly discordant with the CVT bedding planes. This surface 

represents a specific type of angular unconformity in which the erosional surface dips more 

steeply than the beds of the underlying rocks. Although the intense Alpine tectonic overprint 

masks primary bedding within the FU, the onlap of FU sediments onto this surface may be 

reconstructed. Fully embedded within the FU, the metre-sized masses of the CVT represent 

original blocks that fell into the marly limestones of the FU during the early stages of 

deposition. The occurrence of planktonic foraminifera within the authigenic mineral crusts 

highlights the submarine origin of the surface and allows it to be dated to the Albian. The 

occurrence of cavities filled with sediment and cement in the CVT blocks points to the 
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opening of fissures associated with creep processes taking place within poorly consolidated 

levels of the CVT preceding the block fall. 

The evidence observed at the Vallone dei Maestri and Pian Ambrogi sites documents 

the existence of a wide palaeoescarpment incised within the CVT limestones, which was 

generated during the Albian and then progressively covered by the Upper Cretaceous FU 

marly sediments, and affected by the collapse of metre-sized blocks of the exposed partly-

lithified substrate. 

4.2. Passo delle Saline palaeoescarpment 

 

4.2.1. Gias Gruppetti (outcrop 3 in Fig. 1) 

The stratigraphic succession between the DSPM and the FU outcrops spectacularly on 

the eastern side of Cima delle Saline, just a few hundred metres north of Passo delle Saline 

(Fig. 8), with beds dipping 30-40° toward the SW. In the lower portion of the slope a massive 

rock body is present, composed of CVT light micritic limestones 5−6 m thick and some 

hundreds of metres wide. This roughly tabular rock body rests on a relatively planar surface 

which dips about 30° toward the SE and is deeply incised within the DSPM. The body itself is 

in turn onlapped by marly sediments attributable to the upper part of the Eocene CMC (Fig. 

9). Underneath the rock body, a 1.5 m-thick breccia body occurs locally, internally organized 

in erosionally-based 20−40 cm-thick beds (Fig. 10). The breccia is clast-supported and poorly 

sorted, with millimetre- to centimetre-sized clasts of dolomites and a fine grained matrix. Two 

main different textures may be recognized in the clasts, including finely crystalline (crystals 

smaller than 50 µm) and coarsely crystalline dolomite (crystals up to 2 mm). Locally, the fine-

grained dolomite clasts also show irregularly-shaped patches with a coarser crystal size. 

These lithologies may be correlated with the upper part of the DSPM where homogeneous, 
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finely crystalline beds alternate with beds in which shrinkage pores, dissolution vugs and/or 

collapse breccias are filled with a coarse dolomite cement. Most clasts are internally crossed 

by a complex framework of spar-filled veins. Different generations of mutually crosscutting 

veins, some of which display a fibrous aspect, may be recognized by cathodoluminescence 

analysis. The fine-grained matrix of the breccia shows a complex network of very thin dark 

laminae with branched geometries, interpretable as fluid escape structures. 

 

4.2.2. Discussion 

The spectacular outcrop conditions on the eastern side of Cima delle Saline allow the 

observation of anomalous stratigraphic and geometric relationships between Triassic to 

Eocene lithostratigraphic units. From this it is interpreted that the present eastern side of the 

mountain closely corresponds to a submarine palaeoescarpment irregularly covered by 

monomict breccias with Triassic dolomite clasts, and onlapped by Eocene marly sediments. In 

this context, the big slab of CVT represents a large olistolith which slid down from the edge 

of the palaeoescarpment. 

The features displayed by the breccias point to a complex genetic process. The different 

systems of veins document repeated fracturing and cementation of the parent rock preceding 

its exhumation and erosion. The breccias were thus most likely derived from the erosion of a 

fault-rock exposed at the sea floor due to the downward displacement of the fault hanging-

wall. After transportation for a short distance by gravity, the clasts were accumulated in local 

depressions of the underlying palaeoescarpment together with minor amounts of a fine-

grained matrix. Breccia deposition was soon followed by the emplacement of a large block 

which provoked the sudden expulsion of intergranular fluids, as shown by the fluid escape 

structures within the matrix. 
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4.2.3. Vallone Saline (outcrop 4 in Fig. 1) 

This outcrop is located in the southern part of the N−S-oriented Vallone delle Saline. 

Exposed on the right-hand side of the valley and exhibiting a westward dip, QPN sandstones 

are separated by a high-angle eastward-dipping fault plane from a large domain (several 

hundred metres in size) that is internally subdivided into three blocks tilted in a domino-like 

arrangement. The upper portions of the blocks are composed of CVT massive limestones, 

while the depressions between the blocks are filled with the FU (Fig. 11). Specific geometric 

and facies features of the CVT can be observed in each block (Fig. 12). 

Within the easternmost block the bedding surfaces dip 20−30° westward and are cut by 

the eastward-dipping surface which bounds the block to the west. Close to this surface, 

decimetre-thick beds show millimetre- to centimetre-thick cavities. Elongated and aligned to 

the bedding, these cavities are very irregular in shape and are filled with micrite and a sparry 

calcite cement, and also contain geopetal structures. The cavity-bearing beds are frequently 

and abruptly crossed by centimetre- to decimetre-wide sedimentary dykes perpendicular to 

the bedding. The dykes are themselves filled with breccias composed of millimetre-sized 

clasts and a micritic matrix (Fig. 13). 

The CVT limestones of the central block are characterized by a regular centimetre-

spaced lamination. Many millimetre-wide sedimentary sills also occur parallel to the 

lamination, containing a mixed infilling of red micritic sediment and microcrystalline calcitic 

cement. Both sills and laminae dip 20−30° eastward, and are cut by a 40−50° westward-

dipping surface which bounds the western edge of the central block and which is patchily 

covered by a mineralized crust, very similar to that which commonly covers the stratigraphic 

top of the CVT. A few sedimentary dykes occur parallel to the palaeosurface; these are 

slightly wider than the sills parallel to the bedding and are filled with a reddish partially-

mineralized sediment which locally contains small fragments of the mineralized crust. 
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The western block is bounded to the east by a steep (50−60°) surface which dips 

eastward and abruptly cuts the bedding surfaces - which here dip to the west, as in the eastern 

block. This surface is covered by a discontinuous, millimetre- to centimetre-thick clast-

supported breccia (Fig. 14) made up of millimetre- to centimetre-sized CVT clasts, an 

intergranular carbonate sparry cement and a fine-grained matrix. Locally within the clasts, 

millimetre-sized irregular cavities are recognizable which are filled with a non-luminescent 

sparry cement. Most clasts are also crossed internally by different generations of crosscutting 

veins (Fig. 15). The intergranular sparry cement of the breccia is zoned and overgrows small 

fragments of the same cement infilling the veins within the clasts. The textural and structural 

features of these breccias indicate a prolonged and polyphase history of syndepositional 

fracturing at a very superficial level, which can be schematically subdivided as follows: 

1) Creep movements within partially-lithified CVT sediments, probably due to a 

gravitational instability along a slope, caused the opening of irregular cavities that were 

quickly filled with an early sparry cement. 

2) Repeated fracturing events associated with active fluid circulation provoked the 

opening and cementation of different vein systems. 

3) The ongoing fracturing processes resulted in the formation of a breccia composed 

of CVT clasts, vein fragments and micritic sediment. 

4) An early cementation episode led to the growth of the sparry intergranular cement. 

 

4.2.4. Discussion 

The present geometric setting of the Vallone Saline outcrop is the product of an Early 

Cretaceous faulting that resulted in the formation of three blocks variously downthrown, 

rotated and separated by morphostructural depressions. This process is clearly confirmed by 

the occurrence of small patches of the crust of authigenic minerals that coated all exposed 
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surfaces of the resulting rugged sea-floor topography, which was subsequently covered by FU 

sediments. This faulting was associated with different syndepositional tectonic and 

gravitational instability phenomena, whose expression largely depends on the degree of 

lithification of the involved stratigraphic units. The breccia bodies covering the high-angle 

locally-mineralized palaeosurfaces (western block) and the dykes parallel to the surfaces 

(central block) are the most superficial expression, occurring just below the sediment-water 

interface, of a polyphase fracture zone corresponding to normal faults. The creep cavities, the 

centimetre- to decimetre-wide sedimentary dykes perpendicular to bedding (eastern block), 

and the millimetre-wide sedimentary sills parallel to bedding (central block) all indicate the 

presence of tensional stresses oriented parallel to bedding and represent indirect evidence of 

the dislocation and tilting of the blocks. 

 

4.3. Colle del Pas palaeoescarpment 

 

4.3.1. Colle del Pas (outcrop 5 in Fig. 1) 

The steep mountainside west of Colle del Pas is composed of massive Permian 

volcanic rocks overlain by QPN Lower Triassic quartzarenites which dip 30° westward; on 

the gentler slope to the east, the Upper Cretaceous-Eocene succession is exposed, dipping 

20−25° westward. The Permian volcanic rocks are abruptly truncated by an erosional surface 

dipping 40° to the east, which is itself overlain by a 15 m-thick succession of well-bedded 

sediments (Figs. 16, 17). These sediments exhibit unique compositional and sedimentological 

features not observed anywhere else within the stratigraphic succession of the study area. 

Three intervals may be distinguished: 
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Interval 1 (6−7 m thick) is composed of 1−2 m-thick alternating purple and whitish 

beds, both of which display erosional basal bases, rapid variations in thickness and pinch-out 

terminations. The purple beds are composed of fine-grained breccias to arenites which locally 

exhibit a parallel lamination. Cathodoluminescence analysis enabled to distinguish three 

different kinds of grain: 

 1) Quartz crystals, showing a well-developed cathodoluminescence zonation, with 

bright blue cores and purple to red edges identical to the quartz phenocrystals of the Permian 

volcanic rocks. 

 2) Purple microcrystalline grains, with the same pale blue luminescence as shown 

by the groundmass of the Permian volcanic rocks. Veins, 100’s µm-wide and filled with a dull 

brownish luminescent quartz, locally display a fibrous habit and are confined within the 

grains (Fig. 18). 

 3) Polycrystalline quartz grains, showing the same features as the above-described 

veins. 

The white beds are composed of fine- to medium-grained sandstones of the same 

composition as the purple beds; the difference in colour is due to the greater abundance of 

quartz grains. 

Interval 2 (0.5−1 m thick) is a yellowish massive bed made up of a clast-supported 

breccia with millimetre-sized limestone clasts and a partially dolomitized micritic matrix; 

Interval 3 (2 m thick) is a light-coloured massive micritic limestone bed, with a basal 

polygenic clast-supported breccia containing millimetre- to centimetre-sized Saccocoma-

bearing CVT clasts, dolomite clasts and polycrystalline quartz grains. 

Interval 3 is bounded at its top by an irregular surface which is partly covered by 

discontinuous and thin beds of fine-grained limestone with scattered chert nodules and an ill-

defined internal wavy lamination, which can be attributed to the FU formation. 
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Above interval 3, the outcrop conditions are poor, high-angle late Alpine faults cross the 

succession and thus sedimentary bodies cannot be traced laterally. However, some tens of 

metres to the east just above the FU, discontinuous portions of CMC are recognizable. The 

dip of the bedding planes, commonly 20−25° westward, quickly decreases to horizontal 

approaching the erosional surface that truncates the Permian volcanic rocks and thus it is 

possible to infer onlap relationships with the discontinuous levels of FU described above. 

 

4.3.2. Discussion 

Many authors (e.g. Faure-Muret and Fallot, 1954; Guillaume, 1969; Lanteaume et al., 

1990) have pointed out the presence of a high-angle kilometre-long normal fault, passing 

through Colle del Pas with a N−S strike, and have related it to a late stage of Alpine 

orogenesis. The data set outlined above, however, leads to consider the geological setting of 

Colle del Pas as instead being the result of a Cretaceous fault-related palaeoescarpment, 

whose evolution can be tentatively reconstructed in a number of steps. 

Starting from the Early Cretaceous, the Mesozoic succession and underlying massive 

Permian volcanic rocks were dissected by a high-angle N−S striking normal fault. Close to 

the main fault plane, Permian crystalline rocks were repeatedly and intensively fractured 

giving rise to a fault breccia, early cemented by silica-rich fluids. 

Total fault displacement progressively increased to 600−700 m, leading to the 

exhumation of all stratigraphic units of the footwall, including the Permian volcanic rocks. 

The margin of the footwall block was then progressively exhumed and eroded, resulting in the 

formation of a steep escarpment. The lower portion of this escarpment was partially covered 

by coarse-grained sediments derived from the erosion of the margin - first of the quartz-

cemented fault breccia and then of the carbonate breccias containing clasts of the Upper 
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Jurassic rocks. The occurrence of FU sediments resting on these sediments constrains the 

main phase of fault activity to the Cretaceous. 

The morphological depression generated by the fault displacement was partially filled 

during the Middle−Late Eocene by the deposition of the CMC sediments. Alpine tectonic 

foliations later developed in all the lithostratigraphic units, but without any significant change 

of the primary stratigraphic relationships. 

4.3.3. Colle del Pas North (outcrop 6 in Fig. 1) 

Despite poor outcropping, scattered blocks were observed north of Colle del Pas along 

the northern portion of the Colle del Pas escarpment. In the area between Lake Ratoira and 

the Sestrera pass, a lozenge-shaped rock slice some hundreds of metres long, tens of metres 

thick and composed of Triassic and Jurassic carbonate rocks, is sandwiched between the 

Permian volcanic rocks to the west and the FU to the east. The boundary with the Permian 

rocks is represented by a N−S-oriented surface dipping about 30−40° to the east but the 

surface itself cannot be directly observed. The eastern boundary with the FU is locally well-

exposed, and appears as an irregularly-shaped surface which dips on average 20−30° eastward 

draped by thin levels of FU in clear stratigraphic contact (Fig. 19). The elongated rock body is 

composed of different blocks - not in stratigraphic relationships - in which the typical 

lithologies of the DSPM, CRN and CVT are recognizable. In the largest block, a portion of 

succession including the top of the DSPM and the lower part of the CRN occurs. This site 

demonstrates that the breccia deposits with Permian volcanic clasts are discontinuous and that 

very large olistoliths of carbonate rocks may occur along the palaeoescarpment strike. 

4.3.4 Valle del Pas (outcrop 7 in Fig. 1) 

At this site, located several hundred metres south of Colle del Pas, the dolomitic 

limestones of the Costa Losera Formation are widely exposed, dipping slightly to the SW. 
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These limestones are abruptly truncated by a sharp surface which dips 20−30° towards the SE 

and which is characterized by an irregular morphology. This surface is discontinuously 

covered by centimetre- to decimetre-thick patches of a whitish clast-supported breccia 

composed of millimetre- to centimetre-sized dolomite clasts and a fine-grained matrix (Fig. 

20). The textural and compositional features of the clasts are the same as those described in 

section 4.2.1 occurring in the breccia levels at Gias Gruppetti.  

Breccia sediments also occur as infillings of sub-vertical fissures tens of decimetres 

wide, which strike nearly parallel to the NE-dipping surface. Just beneath this surface, the 

uppermost part of the dolomitic limestones consists of an ‘in-situ breccia’ defined by a 

network of millimetre- to centimetre-wide highly irregular veins filled with a calcitic sparry 

cement. Cavities one millimetre in width with a thin isopachous rim of finely crystalline 

calcite cement and a micrite infilling occur locally (Fig. 21). Cathodoluminescence shows that 

both cement and micrite, with their bright yellow luminescence, are markedly different from 

the surrounding dully luminescent dolomitic limestones and in fact closely resemble the 

matrix and cement of the breccias. 

Most veins do not cross the overlying breccia deposit, indicating that deposition of the 

latter took place after the fracturing of the dolomitic limestones (Fig. 20). The intensity of this 

fracturing progressively decreases with depth, and after a few decimetres the veins become 

more spaced and eventually disappear.  

A number of rock bodies composed of metres-thick CVT limestones with a tabular 

geometry and an areal extent ranging from tens to hundreds of metres, directly lean on the 

NE-dipping surface. Both the NE-dipping surface - which is patchily draped by the whitish 

breccia - and the large CVT rock bodies are in turn onlapped by Eocene marly sediments. 

 

4.3.5. Discussion 



 
 

21 

The stratigraphic and geometric relationships observed at this locality perfectly match 

those described at Gias Gruppetti, and can thus be interpreted in the same way. At Valle del 

Pas the lower boundary of the breccias and the Triassic dolomitic limestones are well-

exposed, with the rocks underlying the palaeoescarpment affected by intense fracturing. The 

occurrence of breccia-filled dykes and irregular cavities filled with the micritic matrix of the 

breccias further supports the interpretation of the escarpment as a depositional surface, and 

also documents the opening of the fissures in the underlying rocks after their denudation and 

exposure close to the sea floor. Two distinct stages of fracturing are recorded here. The first, 

occurring before palaeoescarpment formation, gave rise to a complex network of calcite- or 

dolomite-filled fractures within the rock mass. The second took place close to the surface 

after palaeoescarpment formation, and was possibly related to a mechanical relaxing of the 

dolomitic limestones (e.g. Jaeger et al., 2007). 

4.4. Mongioie palaeoescarpment 

At Bocchin dell’Aseo, close to Monte Mongioie (outcrop 8 in Fig. 1), the DSPM 

outcrops extensively, with bedding planes dipping slightly to the SW. These are truncated by 

an irregular surface which dips eastward by about 30° and is discontinuously overlain by 

breccias. The breccia deposits locally reach a total thickness of 80 cm and are internally 

subdivided into dm-thick beds. The texture and composition of the clasts are almost the same 

as those seen in the breccia levels at Gias Gruppetti and Valle del Pas, with the only 

difference being maximum clast size which reaches into the tens of centimetres at Bocchin 

dell’Aseo (Fig. 22). A metre-sized block of CVT lies directly on the surface and the breccia 

sediments, and is in turn covered by the Eocene marly sediments. A few tens of metres east of 

the surface, a larger, decametre–sized block composed of both CRN and CVT limestones is 

entirely embedded within the Eocene marly sediments. A palaeoescarpment also occurs in the 
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Mongioie area, exhibiting the same features and evolution as those at Colle del Pas and 

Saline. 

 

5. Neptunian dykes and subvertical breccia bodies 

Neptunian dykes infilled with Cretaceous sediments were observed in two different 

settings. In the southern part of Pian Ambrogi, a few tens of metres north of the Chiusetta 

palaeoescarpment, many vertical and horizontal neptunian dykes occur within the upper part 

of the CVT. A few centimetres to several decimetres in width, these dykes are filled with red 

sediments containing scattered centimetre- to decimetre-sized clasts of CVT (Fig. 23). The 

red sediment is a wackestone/packstone containing mineralized echinoderm fragments, 

bivalves, and benthic and planktonic foraminifera of generally Middle Albian-Late 

Cenomanian age (e.g. Ticinella primula, Whiteinella aprica, Dicarinella sp., Rotalipora 

cushmani). The local occurrence of clasts consisting of the same red sediment or of finer-

grained similar breccias indicates a polyphase opening and infilling of the dykes (Fig. 24).  

 Close to the southern part of the Colle del Pas palaeoescarpment, two dykes with 

different infillings are recognized within the CVT. Subvertical, striking N−S and about 1 m 

wide, the first dyke is filled with the FU and locally contains decimetre-sized clasts of CVT. 

The dyke walls and the edges of the CVT clasts are patchily covered by a millimetre- to 

centimetre-thick mineralized crust. The second dyke is 20−50 cm wide, dips 40° northward 

and is directly observable for more than 100 m. The infilling sediment in this case is a red-

coloured packstone containing mineralized echinoderm fragments, belemnites and small 

mineralized crust clasts. Outcrop conditions make it impossible to evaluate how deep the 

dykes penetrate the CVT. 
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A close resemblance to these neptunian dykes is displayed by breccia bodies occurring 

at a number of different sites in the Pian Ambrogi area within the CRN and CVT (Fig. 25). 

Ranging in thickness from a few decimetres to 2 m thick, these breccia bodies are 

characterized by tabular geometry and occur sub-perpendicular to bedding with a N−S strike. 

The breccias also exhibit textural features similar to those of the above-described breccia 

deposits which rest on erosional surfaces, being matrix-supported, strictly monomict breccias 

composed of millimetre- to centimetre-sized clasts of the enclosing formation (CRN or CVT) 

and a fine-grained matrix. The clasts are internally crosscut by different systems of veins 

infilled with a calcite cement, while many fragments of the same cement occur within the 

matrix (Fig. 26). Very thin veins, filled with both a sparry cement and fine-grained sediment, 

commonly occur in the matrix. These show complex branched geometries recalling fluid 

escape structures (Fig. 26). Locally, barite crystals occur among clasts within the sparry 

cement. Some O and C stable isotope analyses of the breccia have been undertaken (Table 1). 

The marked difference in δ 18O of clasts, matrix and cements clearly shows that, in spite of the 

Alpine deformation, neither recrystallization nor reequilibration has taken place since breccia 

formation. The strongly negative δ 18O values of the matrix and cements are therefore primary 

signals and document the involvement of hot fluids in the precipitation of the authigenic 

carbonates. The slightly negative δ 18O values of the clasts may relate to a limited contribution 

of strongly negative calcite precipitated in residual pores still present in the enclosing fine-

grained sediments during breccia cementation. The δ13C values, varying between 1.4 to 2.1 ‰ 

PDB, are in the range of normal marine waters and thus any contribution of organic matter or 

hydrocarbons to carbonate precipitation can be ruled out.  

5.1. Discussion 
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The neptunian dykes fit the model of opening and sediment-filling of fissures close to 

the sea floor, well known from numerous western Tethyan examples (e.g. Wendt, 1971; 

Castellarin, 1972; Winterer et al., 1991; Winterer and Sarti, 1994). However, a similar process 

cannot explain the formation of the tabular breccia bodies. The strictly monomict nature of 

the breccias and the presence of different systems of veins within the clasts point to an in situ 

brecciation process occurring within a semi-lithified sediment. Polyphase veining and 

fracturing episodes took place and were most probably associated with a tensional regime. 

The fluid escape structures and isotope values indicate the important role of fluids - most 

probably overpressured and hot - in the production and cementation of the breccia. 

 

6. Discussion 

6.1. Evidence of palaeoescarpments 

The anomalous contacts observed among different lithostratigraphic units - in some 

cases previously interpreted as tectonic - in fact represent primary stratigraphic boundaries 

(Fig. 27). These contacts consist of irregular erosional surfaces more or less deeply incising a 

stratigraphic succession that may range from Upper Jurassic limestones (CVT) down to 

Permian volcano-sedimentary rocks. Such surfaces are partly exposed and partly covered by 

Upper Cretaceous (Formazione di Upega) or Eocene (Calcari della Madonna dei Cancelli) 

sediments, with the localized occurrences of distinctive breccia deposits or crusts of 

authigenic glauconite, phosphates and Fe-Mn oxides identical to the those marking the normal 

stratigraphic CVT − FU boundary. No significant evidence of shear at the boundary is 

present. Moreover, metre- to tens of metres-sized blocks of Upper Jurassic limestones occur 

either directly overlying the surface or embedded within the Upper Cretaceous or Eocene 
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sediments, indicating that these surfaces are palaeoescarpments that developed in submarine 

environments. 

Four different kilometre-long palaeoescarpments (Chiusetta palaeoescarpment, striking 

E−W, and Colle del Pas, Passo delle Saline and Mongioie palaeoescarpments, striking N−S) 

have been recognized and mapped in the study area. 

At present, the Chiusetta palaeoescarpment falls within a large polyphase post-

Oligocene Alpine shear zone (Limone−Viozene deformation zone; Piana et al., 2009). 

Primary stratigraphic relationships and sedimentologic/diagenetic features are however still 

clearly recognizable, making it possible to define the nature and evolution of this 

palaeosurface that may be followed along strike for several kilometres. The N−S-striking 

palaeoescarpments (from west to east: Colle del Pas, Passo delle Saline and Mongioie) are 

also well-preserved. Not only is it possible to evaluate the original relief, in the order of 

hundreds of metres, as well as the geometric/stratigraphic relationships between the 

sedimentary bodies juxtaposed along these kilometre-long palaeoescarpments, but it is also 

feasible to investigate in detail the sedimentologic and petrographic features of distinctive 

deposits which adhere to the surfaces, such as breccias and authigenic mineral crusts.  

 

6.2. Palaeoescarpments as remodelled palaeofault scarps 

Two main mechanisms are usually called upon to explain the genesis of escarpments in 

marine settings: mass gravity flows - that leave a scar upslope - and faulting. Both the nature 

and rheological state of the rocks within which the studied palaeoescarpments were incised 

(mainly Permian volcanics and Triassic dolomites), as well as the degree of vertical 

displacement, enables submarine landslides to be excluded as the process responsible for the 

generation of the surfaces. The escarpments are instead morpho-structural elements resulting 
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from the remodelling of palaeofault planes by gravity-driven block fall processes. Clast-

supported yet fine-grained matrix-bearing breccias, locally organized in beds with erosional 

bases, blanket the escarpments fairly continuously and represent the first products of erosional 

processes to accumulate at the foot of the surfaces. The occurrence within the breccias of 

clasts characterized by polyphase vein systems suggests that they are related to the erosion of 

fault rocks and thus supports the fault-related escarpment hypothesis (Fig. 27). 

The partially early-lithified Upper Jurassic limestones (CVT) occurred at the top of the 

sedimentary column crossed by the fault planes., The supposedly intense fracturing of these 

rocks, subjected to an extensional regime, then provided suitable conditions for the formation, 

detachment and sliding of metre- to tens of metres-sized blocks along the surfaces, just before 

or during the deposition of Cretaceous−Eocene sediments which onlapped the surfaces and 

filled the structural depressions. 

Further evidence of tensional stresses active at the Early−Late Cretaceous boundary in 

the study area is provided by the occurrence of both sub-vertical sedimentary dykes and bed-

parallel creep cavities within the Upper Jurassic CVT limestones. The tabular bodies of 

monomict breccias within the Middle and Upper Jurassic limestones may correspond to 

cataclastic zones parallel to the N−S-trending palaeofaults but characterized by minor 

amounts of vertical displacement. Such zones likely represented preferential conduits for the 

circulation of uprising fluids, whose hydrothermal origin is documented by negative δ18O 

values. The multiphase evolution of the breccias may be related to high fluid pressure that led 

to hydraulic fracturation and cementation of the resulting breccias.  

 

6.3. Age of faulting 
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Planktonic foraminiferal assemblages contained within the crust of authigenic 

minerals coating the top of the Upper Jurassic CVT and the uppermost portion of the E−W 

palaeoescarpment indicate an Aptian age for the beginning of the fault-related displacements 

(Fig. 27). The occurrence of FU sediments just above the whitish and red-purple 

conglomerates which rest directly on Permian volcanic rocks at Colle del Pas shows that most 

displacement took place during the Late Cretaceous. At other sites, the present level of 

erosion does not allow to observe the deepest parts of the escarpments in which the oldest 

onlapping sediments occur. An Early−Late Cretaceous age of scarp formation may also be the 

case for sites at which the palaeoescarpment is directly covered by Eocene sediments. The 

intense deformation and extreme scarcity of recognizable microfossils within the whole FU 

(except for the basal hardground) hinders a precise dating of the oldest sediments onlapping 

the palaeoescarpment, which could range from Cenomanian to Maastrichtian. The time span 

over which the total displacement of about 700 m was accomplished may accordingly range 

from a few to a maximum of 30 my. In any case, the average rates of fault displacement are in 

the order of some cm/ky, which is still much less than that observed along active faults in 

modern extensional settings such as the Gulf of Corinth (Lykousis et al., 2007). 

The onlap of Eocene CMC marly sediments onto the escarpments and the occurrence 

of blocks of the Upper Jurassic CVT, fully embedded within the same Eocene sediments, both 

show that the topography relating to the activity of Cretaceous faults was not yet levelled 

during the Eocene, and thus blocks could fall from scarps in which Upper Jurassic limestone 

was still exposed. 

 

6.4. Geodynamic context 
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The large dataset available with regards to the mid-western Mediterranean clearly 

documents the occurrence of significant tectonic activity close to the Early−Late Cretaceous 

boundary. This period in fact corresponds to a phase of geodynamic restructuration at the 

scale of the whole Western Tethys. Palaeogeographic reconstructions have shown that in the 

Early Cretaceous this area represented a complex junction zone crossed by regional strike-slip 

fault zones (Dercourt et al., 2000; Golongka, 2004). Major plate tectonic events taking place 

between the Hauterivian and the Cenomanian resulted in the break-up of the Newfoundland 

and Iberian margins, i.e. the opening of the N Atlantic, followed by the eastward transcurrent 

movement, in the order of 300−500 km, and counterclockwise rotation of Iberia away from 

Europe that led to the opening of the Bay of Biscay (Olivet, 1996; Gong et al., 2009; 

Lagabrielle et al., 2010). At the same time the eastern part of the Iberian/European margin 

was affected by the opening of the Valais Ocean (Stampfli, 1993; Stampfli et al., 1998; Handy 

et al., 2010; Loprieno et al., 2011), while an important transform system crossed the European 

continent in a roughly E−W direction, connecting the Bay of Biscay to the Valais and 

Ligurian-Piedmont oceans. 

Evidence of a transcurrent tectonism is recorded in the Pyrenean realm, where it is 

associated with intense extensional deformation, crustal stretching and mantle exhumation 

(Lagabrielle and Bodinier, 2008; Jammes et al., 2009; Lagabrielle et al., 2010). In the 

southwestern French subalpine domain, extensional to strike-slip Early Cretaceous tectonics 

controlled the evolution of the boundary between the Provençal platform and the Vocontian 

Basin (Friès and Parize, 2003; Montenat et al., 2004). The associated regional fault activity is 

documented by the occurrence of fault scarps onlapped by Albian sediments, conglomerate 

beds and olistoliths (Dardeau and de Graciansky, 1987; de Graciansky et al., 1987; de 

Graciansky and Lemoine, 1988; Montenat et al., 1997; Montenat et al., 2004), and multiple 

stratigraphic hiatuses taking place within the Lower Cretaceous (Hibsch et al., 1992; Pasquini 
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et al., 2004). A regional hiatus occurring during the Aptian−Albian is also documented within 

the Briançonnais Domain (Barfety et al., 1996), while Claudel et al. (1997) and Claudel & 

Dumont (1999) reported the incidence of two different synsedimentary extensional events in 

the Albian and Turonian, respectively.  

The Ligurian Briançonnais Domain was located at the easternmost end of a regional 

transform system connecting the Bay of Biscay to the Valais and Ligurian-Piedmont oceans 

(e.g. Stampfli, 1993; Stampfli et al., 2002; Rosenbaum and Lister, 2005; Handy et al., 2010) 

(Fig. 28). In this tectonic context, the study area may be envisaged as a Cretaceous kilometre-

sized fault-bounded basin bordered to the north and south by two main E−W transcurrent 

faults - in some way related to the present-day Verzera and Limone-Viozene transpressive 

zones - and internally partitioned by east-dipping normal faults (Colle del Pas, Passo delle 

Saline, Mongioie) with vertical displacement in the order of some hundreds of metres (Fig. 

29). Locally, minor west-dipping normal faults give rise to small horst-and-graben structures 

with blocks downthrown by a few tens of metres (e.g. the Vallone Saline outcrop). 

 

7. Conclusions 

The main results of the present paper may be summarized as follows: 

- Kilometre-scale palaeoescarpments have been recognized in the central part of the External 

Ligurian Briançonnais in the Ligurian Alps. They consist of irregular erosional surfaces more 

or less deeply incising the Permian to Upper Jurassic rock column and are onlapped by Upper 

Cretaceous−Upper Eocene sediments. 

- The presence of discontinuous breccia bodies containing clasts of fault rocks and draping 

palaeoescarpments demonstrates that the latter resulted from the erosional sculpturing of 

normal fault planes exposed in a submarine environment. Large-scale rock fall processes then 
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caused the emplacement of olistoliths of Upper Jurassic limestones directly over the surfaces 

or embedded within onlapping sediments. 

- The occurrence of subvertical sedimentary dykes and tabular in situ breccia bodies, related 

to cataclastic zones, further supports a tensional regime. Negative vein calcite δ18O values and 

the fluid escape structures observed within the tabular breccias are both suggestive of 

hydraulic fracturing by upward flows of overpressurized, hot fluids.  

 - The biostratigraphic ages of the authigenic mineral crust, which coats the top of the CVT 

and localized areas of the uppermost parts of the palaeoescarpments, indicate that fault 

activity started in the Aptian; most displacement took place during the Late Cretaceous and 

gave rise to morphostructural depressions up to several hundred metres deep.  

- The recognition of different systems of mappable palaeoescarpments suggests that, during 

the Cretaceous, the study area corresponded to a fault-bounded basin limited by E−W 

transcurrent zones and internally partitioned by N−S normal faults. This inferred geotectonic 

setting could be consistent with the palaeogeographic position of the Ligurian Briançonnais 

Domain; located at the easternmost end of a transform system that at the Early−Late 

Cretaceous boundary connected the Bay of Biscay to the Valais and Ligurian-Piedmont 

oceans. 

- The results of this study are relevant in particular for geologists working in mountain chains 

where present-day geometric relationships between rock bodies are mainly interpreted as the 

result of contractional tectonics related to orogenic processes. The primary architecture of a 

sedimentary basin, controlled by syndepositional faults, can in fact be well-preserved even on 

a large scale, and within structural domains affected by polyphase deformation and very low 

grade metamorphism. 
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FIGURE CAPTIONS 

Fig. 1. A. Location of the study area. AM: Argentera massif; D: Dauphinois units; HF: 

Helminthoides Flysch unit; PP: Pre Piemontese units; LB: Ligurian Briançonnais units; TU: 

Colle di Tenda unit. B. Geological sketch map of the study area, with the four recognized 

palaeoescarpments (CP: Chiusetta palaeoescarpment; CPP: Colle del Pas palaeoescarpment; 

PSP: Passo delle Saline palaeoescarpment; MP: Mongioie palaeoescarpment) and the 

location of the described outcrops (1: Vallone dei Maestri; 2: Pian Ambrogi; 3: Gias 

Gruppetti; 4: Vallone Saline; 5: Colle del Pas; 6: Colle del Pas North; 7: Valle del Pas; 8: 

Bocchin dell’Aseo). VIDZ: Limone-Viozene deformation zone; VZSZ: Verzera shear zone. 

Modified after Piana et al. (2009). 

Fig. 2. Simplified stratigraphic section of the External Ligurian Briançonnais succession. In 

the right column acronyms of the lithostratigraphic units, as used in the text, are reported. 

Fig. 3. Panoramic view of the Vallone dei Maestri, showing the E−W oriented Calcari di Val 

Tanarello (CVT)  − Formazione di Upega (FU) boundary (dashed line), corresponding to the 

Chiusetta palaeoescarpment. The black asterisk points to the Vallone dei Maestri outcrop. 

The Don Barbera hut (encircled) for scale is about 20 m long. 

Fig. 4. Vallone dei Maestri outcrop (locality 1 in Figure 1). Picture and interpretive sketch of 

the mineralized surface incised within the Calcari di Val Tanarello (CVT), and onlapped by 

the Formazione di Upega (FU) sediments. At the base of the surface a metre-sized Calcari di 

Val Tanarello block (CVT b) is visible. Thin lines highlight bedding planes. Hammer for 

scale is 35 cm long. HG: mineralized crust. 

Fig. 5. Vallone dei Maestri outcrop. A. Photomicrograph showing an irregular creep-related 

cavity occurring in a Calcari di Val Tanarello block. Note the isopachous calcite cement rim. 

The square indicates position of B. B. Close up of Figure A in cathodoluminescence, 

highlighting the geopetal infilling and the cathodoluminescence zonation of the cement. 
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Fig. 6. Staircase arrangement of the Pian Ambrogi outcrop, with two morphological steps 

made up of Calcari di Val Tanarello limestones (CVT) separated by Formazione di Upega 

sediments (FU). Dotted lines indicate the Calcari di Val Tanarello − Formazione di Upega 

boundaries. The black dot points to location of Fig. 7. 

Fig. 7. Pian Ambrogi outcrop (locality 2 in Figure 1). Subhorizontal Calcari di Val Tanarello 

(CVT) bedding planes (white dotted lines) of the upper morphological step are abruptly 

truncated by a steep surface patchily covered by a mineralized crust (HG) and onlapped by 

the Formazione di Upega (FU). A graphic sketch of the geometric relationships is shown in 

the box at the upper left corner. 

Fig. 8. Panoramic view of the eastern side of the Cima delle Saline, preserving large 

evidence of  a submarine palaeoescarpment. The a-b line corresponds to the schematic cross 

section shown on Figure 9. 

Fig 9. Schematic, not to scale, section across the eastern side of the Cima delle Saline 

showing stratigraphic and geometrical relationships. The section line (a-b) is shown in Figure 

8 and is about 300 m long. DSPM: Dolomie di San Pietro dei Monti; CRN: Calcari di Rio di 

Nava; CVT: Calcari di Val Tanarello; CMC: Calcari della Madonna dei Cancelli; br: breccia 

sediments. 

Fig. 10. Gias Gruppetti outcrop (locality 3 in Figure 1). Stratified breccia deposits (br) 

between the Calcari di Val Tanarello block (CVT) and the underlying palaeoescarpment, 

incised into the Dolomie di San Pietro dei Monti (DSPM). 

Fig. 11. Vallone Saline outcrop (locality 4 in Figure 1). Calcari di Val Tanarello limestones 

are subdivided into three blocks (WB: western block; CB: central block; EB: eastern block) 

showing a domino-like arrangement. The depressions between the blocks are filled with 

Formazione di Upega (FU) sediments. Height of the cliff on the right side is about 50 m. 
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Fig. 12. Graphic sketch of Figure 11. All the mesoscopic and microscopic features described 

in the text are represented schematically. WB: western block; CB: central block; EB: eastern 

block; CVT: Calcari di Val Tanarello; FU: Formazione di Upega; HG: hard ground; ND&S: 

neptunian dykes and sills; br: breccias. 

Fig. 13. Vallone Saline outcrop. Cavity-bearing beds within the eastern block. A. Cavities 

(Cc) are irregularly shaped, elongated and aligned to bedding. They are filled with a sparry 

calcite cement, locally showing geopetal structures. B. Polished slab showing cavities 

abruptly crossed by a sedimentary dyke (d) filled with a breccia. Hatched lines indicate 

bedding. 

Fig. 14. Vallone Saline outcrop. A. A steep surface incising the Calcari di Val Tanarello 

(CVT) bounds to the east the western block and is onlapped by Formazione di Upega 

sediments (FU). Breccias (br) plaster the surface. Hatched white lines in the CVT indicate 

bedding planes. B. Close-up view of the surface, with the thin and discontinuos breccia (br). 

Fig. 15. Thin section of the breccia of Figure 14, in transmitted light (A) and in 

cathodoluminescence (B). Clasts are internally crossed by different generations of veins. 

Fig. 16.  Panoramic view of the Colle del Pas southern side. The white asterisk points to the 

location of Figure 17. In the corresponding graphic sketch below, the boundaries between 

different lithological units are shown. V: Permian volcanics; QPN: Quarziti di Ponte di Nava; 

FU: Formazione di Upega; CMC: Calcari della Madonna dei Cancelli; br: breccia sediments. 

Fig. 17. Colle del Pas outcrop (locality 5 in Figure 1). An erosional surface (hatched white 

line) dipping at medium angle to SE is incised into the Permian volcanic rocks (V) and is 

overlain by well-bedded breccia sediments. 

Fig. 18. Photomicrographs of the fine-grained breccias of the Colle del Pas outcrop, Level 1, 

showing veins (v) filled with dull brownish luminescent fibrous quartz cement and confined 
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within microcrystalline volcanic grains (g), showing a pale blue luminescence. A. 

Transmitted light, crossed nicols. B. Cathodoluminescence. 

Fig. 19. Colle del Pas North outcrop (locality 6 in Figure 1). Thin beds of Formazione di 

Upega sediments (FU) draping an irregular surface, abruptly truncating the Calcari di Val 

Tanarello limestones (CVT) of the elongated rock body. Black arrows point to the 

stratigraphic contact. Hammer for scale is 35 cm long. 

Fig. 20. Valle del Pas outcrop (locality 7 in Figure 1). A thin layer of whitish clast-supported 

breccia drapes an irregular surface incised into the highly fractured dark dolomitic limestones 

of the lower part of the DSPM. Note that a thin vein in the dark dolomitic limestones 

(encircled) does not cross the overlying breccia. 

Fig. 21. Valle del Pas outcrop. Photomicrograph of a cement-rimmed and micrite-filled 

cavity within the DSPM dolomitic limestones, just beneath the breccia. A. Transmitted light. 

B. Cathodoluminescence. 

Fig. 22. Bocchin dell’Aseo outcrop (locality 8 in Figure 1). Breccia beds resting on the 

Mongioie paleoescarpment. Hammer for scale is 35 cm long.  

Fig. 23. Pian Ambrogi. Vertical dyke (d) within the upper part of Calcari di Val Tanarello 

(CVT). Hammer for scale is 35 cm long. Dyke walls are marked by black lines. 

Fig. 24. Detail of the infilling sediment of the dyke of Figure 23. Note that some clasts show 

a brecciated texture documenting polyphase fracturing and infilling.  

Fig. 25. Tabular sub-vertical breccia body (black arrow) occurring within the subhorizontal 

Calcari di Rio di Nava (white arrow). The hammer head in the upper right is about 18 cm 

long. 

Fig. 26. Photomicrographs of the breccia of Figure 25. The clast in the middle is crosscut by 

two different veins (I and II). Fragments of type II veins are also observable in the matrix. 
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Note the occurrence of very thin veins (tv) in the matrix showing branched geometries. A. 

Transmitted light. B. Cathodoluminescence. 

Fig. 27. Sketch representing four steps in the evolution of Cretaceous palaeofaults and their 

remodelling into palaeoescarpments. For the sake of graphical simplicity, the Middle−Upper 

Jurassic limestones are represented as a tabular body although it was reported by Bertok et al. 

(2011) that thickness changes occur in the Middle – Upper Jurassic succession and 

palaeoescarpments were already present during its deposition. V: Permian volcanics; QPN: 

Quarziti di Ponte di Nava; DSPM: Dolomie  di S. Pietro dei Monti; CRN: Calcari di Rio di 

Nava; CVT: Calcari di Val Tanarello; FU: Formazione di Upega; CMC: Calcari della 

Madonna dei Cancelli; HG: hard ground; br: breccia sediments; fr: fault rocks; ol: olistholith. 

Fig. 28. Palaeogeographic map of the Western Tethys in the Aptian, showing the location of 

the Marguareis − Mongioie area (black asterisk). Redrawn after Handy et al. (2010) and 

Stampfli et al. (2002). 

Fig. 29. Schematic plan-view and 3D sketch of the Cretaceous kilometre-sized fault-bounded 

basin. VIDZ: Limone-Viozene deformation zone; VZSZ: Verzera shear zone. 

 

Table 1. Stable isotope data from the sub-vertical breccia bodies. 
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