4,375 research outputs found
Model-Independent Constraints on Dark Energy Density from Flux-averaging Analysis of Type Ia Supernova Data
We reconstruct the dark energy density as a free function from
current type Ia supernova (SN Ia) data (Tonry et al. 2003; Barris et al. 2003;
Knop et al. 2003), together with the Cosmic Microwave Background (CMB) shift
parameter from CMB data (WMAP, CBI, and ACBAR), and the large scale structure
(LSS) growth factor from 2dF galaxy survey data. We parametrize as
a continuous function, given by interpolating its amplitudes at equally spaced
values in the redshift range covered by SN Ia data, and a constant at
larger (where is only weakly constrained by CMB data). We
assume a flat universe, and use the Markov Chain Monte Carlo (MCMC) technique
in our analysis. We find that the dark energy density is constant
for 0 \la z \la 0.5 and increases with redshift for 0.5 \la z \la 1 at
68.3% confidence level, but is consistent with a constant at 95% confidence
level. For comparison, we also give constraints on a constant equation of state
for the dark energy.
Flux-averaging of SN Ia data is required to yield cosmological parameter
constraints that are free of the bias induced by weak gravitational lensing
\citep{Wang00b}. We set up a consistent framework for flux-averaging analysis
of SN Ia data, based on \cite{Wang00b}. We find that flux-averaging of SN Ia
data leads to slightly lower and smaller time-variation in
. This suggests that a significant increase in the number of SNe Ia
from deep SN surveys on a dedicated telescope \citep{Wang00a} is needed to
place a robust constraint on the time-dependence of the dark energy density.Comment: Slightly revised in presentation, ApJ accepted. One color figure
shows rho_X(z) reconstructed from dat
Instrumental Variable Estimation of the Causal Effect of Hunger Early in Life on Health Later in Life
Numerous studies have evaluated the effect of nutrition early in life on health much later in life by comparing individuals born during a famine to others. Nutritional intake is typically unobserved and endogenous, whereas famines arguably provide exogenous variation in the provision of nutrition. However, living through a famine early in life does not necessarily imply a lack of nutrition during that age interval, and vice versa, and in this sense the observed difference at most provides a qualitative assessment of the average causal effect of a nutritional shortage, which is the parameter of interest. In this paper we estimate this average causal effect on health outcomes later in life, by applying instrumental variable estimation, using data with self-reported periods of hunger earlier in life, with famines as instruments. The data contain samples from European countries and include birth cohorts exposed to various famines in the 20th century. We use two-sample IV estimation to deal with imperfect recollection of conditions at very early stages of life. The estimated average causal effects often exceed famine effects by a factor three.2SLS, obesity, high blood pressure, height, developmental origins, ageing, famine, nutrition, two-sample IV
Model selection in cosmology
Model selection aims to determine which theoretical models are most plausible given some data, without necessarily considering preferred values of model parameters. A common model selection question is to ask when new data require introduction of an additional parameter, describing a newly discovered physical effect. We review model selection statistics, then focus on the Bayesian evidence, which implements Bayesian analysis at the level of models rather than parameters. We describe our CosmoNest code, the first computationally efficient implementation of Bayesian model selection in a cosmological context. We apply it to recent WMAP satellite data, examining the need for a perturbation spectral index differing from the scaleinvariant (Harrison–Zel'dovich) case
Cosmic microwave background multipole alignments in slab topologies
Several analyses of the microwave sky maps from the Wilkinson Microwave
Anisotropy Probe (WMAP) have drawn attention to alignments amongst the
low-order multipoles. Amongst the various possible explanations, an effect of
cosmic topology has been invoked by several authors. We focus on an alignment
of the first four multipoles (\ell = 2 to 5) found by Land and Magueijo (2005),
and investigate the distribution of their alignment statistic for a set of
simulated cosmic microwave background maps for cosmologies with slab-like
topology. We find that this topology does offer a modest increase in the
probability of the observed value, but that even for the smallest topology
considered the probability of the observed value remains below one percent.Comment: 6 pages RevTex with 6 figures included. Minor changes to match
version accepted as Physical Review D Rapid Communicatio
Planck priors for dark energy surveys
Although cosmic microwave background (CMB) anisotropy data alone cannot
constrain simultaneously the spatial curvature and the equation of state of
dark energy, CMB data provide a valuable addition to other experimental
results. However computing a full CMB power spectrum with a Boltzmann code is
quite slow; for instance if we want to work with many dark energy and/or
modified gravity models, or would like to optimize experiments where many
different configurations need to be tested, it is possible to adopt a quicker
and more efficient approach.
In this paper we consider the compression of the projected Planck CMB data
into four parameters, R (scaled distance to last scattering surface), l_a
(angular scale of sound horizon at last scattering), Omega_b h^2 (baryon
density fraction) and n_s (powerlaw index of primordial matter power spectrum),
all of which can be computed quickly. We show that, although this compression
loses information compared to the full likelihood, such information loss
becomes negligible when more data is added. We also demonstrate that the method
can be used for scalar field dark energy independently of the parametrisation
of the equation of state, and discuss how this method should be used for other
kinds of dark energy models.Comment: 8 pages, 3 figures, 4 table
2-D and 3-D Radiation Transfer Models of High-Mass Star Formation
2-D and 3-D radiation transfer models of forming stars generally produce
bluer 1-10 micron colors than 1-D models of the same evolutionary state and
envelope mass. Therefore, 1-D models of the shortwave radiation will generally
estimate a lower envelope mass and later evolutionary state than
multidimensional models. 1-D models are probably reasonable for very young
sources, or longwave analysis (wavelengths > 100 microns). In our 3-D models of
high-mass stars in clumpy molecular clouds, we find no correlation between the
depth of the 10 micron silicate feature and the longwave (> 100 micron) SED
(which sets the envelope mass), even when the average optical extinction of the
envelope is >100 magnitudes. This is in agreement with the observations of
Faison et al. (1998) of several UltraCompact HII (UCHII) regions, suggesting
that many of these sources are more evolved than embedded protostars.
We have calculated a large grid of 2-D models and find substantial overlap
between different evolutionary states in the mid-IR color-color diagrams. We
have developed a model fitter to work in conjunction with the grid to analyze
large datasets. This grid and fitter will be expanded and tested in 2005 and
released to the public in 2006.Comment: 10 pages, 8 figures, to appear in the proceedings of IAU Symp 227,
Massive Star Birth: A Crossroads of Astrophysics, (Cesaroni R., Churchwell
E., Felli M., Walmsley C. editors
COBE-DMR-Normalized Dark Energy Cosmogony
Likelihood analyses of the COBE-DMR sky maps are used to determine the
normalization of the inverse-power-law-potential scalar field dark energy
model. Predictions of the DMR-normalized model are compared to various
observations to constrain the allowed range of model parameters. Although the
derived constraints are restrictive, evolving dark energy density scalar field
models remain an observationally-viable alternative to the constant
cosmological constant model.Comment: 26 pages, 10 figures, ApJ accepte
R&D on co-working transport schemes in Geant4
A research and development (R&D) project related to the extension of the
Geant4 toolkit has been recently launched to address fundamental methods in
radiation transport simulation. The project focuses on simulation at different
scales in the same experimental environment; this problem requires new methods
across the current boundaries of condensed-random-walk and discrete transport
schemes. The new developments have been motivated by experimental requirements
in various domains, including nanodosimetry, astronomy and detector
developments for high energy physics applications.Comment: To be published in the Proceedings of the CHEP (Computing in High
Energy Physics) 2009 conferenc
- …