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Although cosmic microwave background anisotropy data alone cannot constrain simultaneously the

spatial curvature and the equation of state of dark energy, CMB data provide a valuable addition to other

experimental results. However computing a full CMB power spectrum with a Boltzmann code is quite

slow; for instance if we want to work with many dark energy and/or modified gravity models, or would

like to optimize experiments where many different configurations need to be tested, it is possible to adopt

a quicker and more efficient approach. In this paper we consider the compression of the projected Planck

cosmic microwave background data into four parameters, R (scaled distance to last scattering surface), la
(angular scale of sound horizon at last scattering),�bh

2 (baryon density fraction) and ns (powerlaw index

of primordial matter power spectrum), all of which can be computed quickly. We show that, although this

compression loses information compared to the full likelihood, such information loss becomes negligible

when more data is added. We also demonstrate that the method can be used for canonical scalar-field dark

energy independently of the parametrization of the equation of state, and discuss how this method should

be used for other kinds of dark energy models.
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I. INTRODUCTION

Dark energy model building continues to be an active
area of research [1–10]. While current data remain con-
sistent with a cosmological constant explanation for dark
energy, other possibilities are not yet ruled out, especially
if theoretical motivation can be found to tighten their
predictions about the data [11]. New theoretical ideas
thus may bolster support in favor of an exotic component
of matter or a modification of gravity beyond some length
scale.

On the observational front, recognizing the need for
better data, many future dark energy surveys have been
proposed, classified by the Dark Energy Task Force as
stage III and stage IV experiments [12]. The realizable
constraints from these surveys depend sensitively on the
external or prior information that will be available in the
future. A crucial external data set will come from the
Planck satellite, which will place strong constraints on a
range of cosmological parameters. It is therefore important
to include this data for forecasts and optimizations of
instrument performance for the stage III and IV dark
energy surveys. This in turn requires a rapid way to evalu-
ate the predicted Planck likelihood, preferably without the
necessity to run a Boltzmann code.

Some of us have shown that the information from the
WMAP CMB experiment [13] can be effectively and
simply incorporated into a likelihood analysis of Type Ia
supernovae (SN Ia) and baryon acoustic oscillation (BAO)
data by including in the likelihood a term involving
WMAP constraints on the CMB shift parameter (R), the
angular scale of the sound horizon at last scattering (la),

and the baryon density �bh
2, in Gaussian form together

with their full covariance matrix [14]. The idea being that
the calculation of full CMB spectra at each parameter point
can be avoided, so that a Markov Chain Monte Carlo
(MCMC) analysis proceeds very quickly. The merit lies
in the method being independent of the dark energy model
used as long as only background (or homogeneous) quan-
tities are varied.
In this paper we extend the method to projected Planck

data, which is significantly more accurate than WMAP
data. We derive and test this simple prescription, compare
it to a full likelihood analysis of simulated Planck data, and
conclude that when such a Planck prior is combined with
future dark energy surveys useful complementary informa-
tion from the CMB is retained and there is no significant
information loss. Hence the prescription remains an effec-
tive way to incorporate constraints from Planck (or Planck
priors) in the analyses of data from future dark energy
surveys.

II. COMPONENTS OF THE PROPOSED PLANCK
LIKELIHOOD

Let us first introduce the parameters that we are propos-
ing to use as an effective summary of the information
contained in a CMB spectrum:

R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mH

2
0

q
rðzCMBÞ; la � �rðzCMBÞ=rsðzCMBÞ; (1)

where rðzÞ is the comoving distance from the observer to
redshift z, and rsðzCMBÞ is the comoving size of the sound
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horizon at decoupling. We give the details of the formulas
used in Appendix A.

In this scheme, la describes the peak location through
the angular diameter distance to decoupling and the size of
the sound horizon at that time. If the geometry changes,
either due to nonzero curvature or due to a different equa-
tion of state of dark energy, la changes in the same way as
the peak structure. R encodes similar information, but in
addition contains the matter density which is connected
with the peak height. In a given class of models (for
example, quintessence dark energy), these parameters are
‘‘observables’’ relating to the shape of the observed CMB
spectrum, and constraints on them remain the same inde-
pendent of (the prescription for) the equation of state of the
dark energy. Furthermore, R and la are very well con-
strained by WMAP and even better by Planck and their
likelihoods are almost perfectly Gaussian (remaining so
under different treatments of dark energy), so that a
Gaussian likelihood term together with the corresponding
covariance matrix retains almost all of the information on
these derived parameters. With curvature held fixed, an
even simpler setup using just R sufficed and has been used
by many authors, including [15,16].

As a caveat we note that if some assumptions regarding
the evolution of perturbations are changed, then the corre-
sponding R and la constraints and covariance matrix will
need to be recalculated under each such hypothesis, for
instance if massive neutrinos were to be included, or even
if tensors were included in the analysis [17]. Further R as
defined in Eq. (1) can be badly constrained and quite
useless if the dark energy clusters as well, e.g. if it has a
low sound speed, as in the model discussed in [18].
However, as discussed further below we checked that our
constraints are valid at least for scalar-field dark energy
models, independent of the parametrization of wðzÞ.

In addition to R and la we use the baryon density �bh
2,

and optionally the spectral index of the scalar perturbations
ns, as these are strongly correlated with R and la, which
means that we will lose information if we do not include
these correlations.

III. SIMULATED DATA

Our simulation and treatment of Planck data is as in [19].
We include the temperature and polarization (TT, TE, and
EE) spectra from three temperature channels with specifi-
cation similar to the HFI channels of frequency 100 GHz,
143 GHz, and 217 GHz, and one 143 GHz polarization
channel, following the current Planck documentation,1 The
full likelihood is constructed assuming a sky coverage of
0.8. We choose a fiducial model close to theWMAP best-fit
LCDM model: �bh

2 ¼ 0:022, �mh
2 ¼ 0:127, h ¼ 0:73,

�k ¼ 0, w0 ¼ �1, and wa ¼ 0.

For the Baryon Acoustic Oscillation part, we use the
experimental configuration outlined in the DETF report
[12]. A Stage III spectroscopic experiment would cover
2000 square degrees with a redshift range of 0:5< 1:3,
divided into 4 equally sized redshift bins, plus 300 square
degrees with 2:3< z < 3:3. The experiment would obtain
the spectra of 107 galaxies. This survey will measure the
oscillations in the galaxy power spectrum, in the tangential
direction (measuring rðzÞ), and the radial direction (mea-
suring drðzÞ=dz ¼ c=HðzÞ, providing a direct measure-
ment of the Hubble parameter). To estimate the accuracy
with which the radial and tangential oscillations can be
measured, we apply these survey parameters to the fitting
formulas described in [20]. These fitting formulas only
consider the accuracy with which the oscillations them-
selves can be measured, returning no information about the
accuracy of the power spectrum measurement (as is done
in e.g. [21,22]. This is because the number of possible
parameters contributing to the nature of the matter power
spectrum, such as running of the spectral index, massive
neutrinos, and nonlinear bias, make this calculation very
assumption dependent. In contrast, the positions of the
oscillations are very robust with regard to these extra
considerations.
For the supernovae, we use a Stage III spectroscopic

survey as described in the DETF report [12]. We assume a
scaled-up version of the SNLS survey with 2000 super-
novae in the range 0:1< z < 1, with a further 500 super-
novae at low redshift. The dispersion in observed
magnitude is the sum in quadrature of a fixed �D ¼ 0:12
with a second piece�m, which is fixed at 0.02 up to z ¼ 0:4
but then increases up to 0.03 by z ¼ 1.

IV. ANALYSIS

The full set of constraints on all parameters including R
and la are determined through an MCMC-based likelihood
analysis [23] of simulated Planck data. Planck will provide
much tighter constraints on parameters, and its posterior
will be significantly better localized in parameter space
than that of WMAP. The shape of the posterior (i.e. pa-
rameter correlations) is also found to be quite different
fromWMAP’s (further justifying the exercise of determin-
ing the best way to incorporate constraints from Planck
separately from WMAP). While R and la were almost
uncorrelated for WMAP data, this is no longer the case
for Planck. Tables I and II show the estimated values and
the covariance matrix for R, la, �bh

2 and ns. In Table III
we also show the normalized covariance matrix to illustrate
the strong correlations between these parameters. We have
included ns here because it is found to have a correlation
with R and la and a different consideration of BAO data in
the future; utilizing the full shape of the matter power
spectrum, might require the inclusion of ns as a parameter.
In the analysis presented in this paper, given the conserva-

1www.rssd.esa.int/index.php?
project=PLANCK&page=perf_top
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tive treatment of the BAO signal, the inclusion of ns does
not have a noticeable impact.

The first point to consider and retest with Planck data is
whether the constraints on R, la, �bh

2 and ns, and their
corresponding covariance matrix, are independent of the
dark energy prescription used. In [14] we tested this for
WMAP data for a cosmological constant, constant w and
w0-wa models of dark energy, with and without curvature.
Here we test it again for a flat model with a cosmological
constant, and thew0,wa model and the kink model for dark
energy, both with curvature, and for Planck quality data. In
the w0, wa model wXðzÞ ¼ w0 þ wað1� aÞ [24] which

corresponds to XðzÞ ¼ a�3ð1þw0þwaÞe3waða�1Þ. In the kink
model the equation of state parameter wX is described by
its value today, w0, its asymptotic value at high redshift,
wm, as well by two more parameters giving the location
and speed of the transition from wm to w0 [25]. In this case
the energy density is derived through a numerical integra-
tion of the continuity equation. We found that there is no
significant difference in the constraints on R, la,�bh

2 and
ns obtained using these different models. See Fig. 1.

Let us now test for the amount of information on pa-
rameters relevant to dark energy that is lost by considering
a likelihood based on R, la,�bh

2 and ns rather than the full
CMB spectra. Figure 2 shows w0, wa contours obtained
from a full likelihood analysis of Planck simulated data
(shaded contours) against contours reconstructed from the
R, la, �bh

2 and ns likelihood (solid curves). We find that
even in this limited 2D view there is significant information
loss: The shaded contours from the full likelihood cover
significantly less area than the open contours from the
simpler likelihood. Because of the strong degeneracies
which leave Planck basically unable to constrain cosmo-
logical parameters relating to dark energy and curvature on
its own, the resulting contours depend strongly on the
priors used.

Even though Planck on its own is not a very useful dark
energy experiment, it will strongly improve the constraints
from future dark energy probes like SN Ia and BAO. We
show in Fig. 3 the marginalized 68% and 95% error con-
tours for the combined BAO and SN Ia data sets, with and
without adding the Planck data. We see that the constraints
on w0, wa from a combined BAO and SN Ia data set are
significantly improved when the Planck data is included. It
is therefore important to include this additional informa-
tion when optimizing or selecting future dark energy
experiments.
It may be useful to note that given the R, la,�bh

2 and ns
likelihood, one can implement a full likelihood analysis
under different dark energy models more efficiently using
Hamiltonian Monte Carlo. In this method the R, la, �bh

2

and ns likelihood is used as a guide to or an approximation
of the true likelihood surface, but at each accepted point
the likelihood is weighted using the full CMB spectra. We
discuss this procedure in more detail in Appendix C.
However the question remains whether there is still an

information loss when using the R, la, �bh
2 and ns like-

lihood from Planck when analyzing SN Ia and/or BAO
data, as compared to the full Boltzmann analysis of Planck
data, which is much more time-consuming and so limits
our ability to consider many varied dark energy models. To

TABLE II. Covariance matrix for ðR; la;�bh
2; nsÞ from Planck.

R la �bh
2 ns

�k � 0

R 0:303492E� 04 0:297688E� 03 �0:545532E� 06 �0:175976E� 04
la 0:297688E� 03 0:951881E� 02 �0:759752E� 05 �0:183814E� 03
�bh

2 �0:545532E� 06 �0:759752E� 05 0:279464E� 07 0:238882E� 06
ns �0:175976E� 04 �0:183814E� 03 0:238882E� 06 0:147219E� 04

TABLE I. R, la,�bh
2 and ns estimated from Planck simulated

data.

Parameter Mean rms variance

�k � 0

R 1.7016 0.0055

la 302.108 0.098

�bh
2 0.02199 0.00017

ns 0.9602 0.0038

R

l a

1.685 1.69 1.695 1.7 1.705 1.71 1.715
301.8

301.9

302

302.1

302.2

302.3

302.4

FIG. 1 (color online). This figure shows the projected 68% and
95% Planck constraints on R and la obtained assuming that dark
energy was due to a cosmological constant (flat �CDM, dashed
contours), a w0, wa model (shaded contours) and a kink model
(solid contours), as described in the text.
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address this we compared the outputs from two analyses.
First we performed a full MCMC run, i.e. including the full
Planck likelihood and likelihoods from simulated stage III
SN Ia and BAO surveys. Second we performed an MCMC
analysis using the R, la, �bh

2 and ns likelihood from
Planck together with the SN Ia and BAO likelihood.
Figure 4 shows the constraints obtained in each case. We
conclude that there is effectively no information loss in
using the R, la, �bh

2 and ns likelihood, in conjunction
with the likelihood from a better SN Ia and/or BAO ex-
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FIG. 4 (color online). This figure shows 2D confidence con-
tours obtained using a full likelihood analysis of simulated
Planck data in conjunction with stage III SN Ia and BAO data
(shaded contours), contours obtained using the simplified R, la,
�bh

2 and ns based likelihood analysis of Planck data together
with stage III SN Ia and BAO data (solid contours) and finally a
Fisher matrix treatment of all data (dashed contours) as de-
scribed further in the text.

w
0

w
a

−1.3 −1.2 −1.1 −1 −0.9 −0.8 −0.7
−1.5

−1

−0.5

0

0.5

1

1.5

FIG. 3 (color online). This figure shows the projected con-
straints of stage III SN Ia and BAO experiments on w0, wa

obtained using a full likelihood analysis (solid black contours)
and a Fisher matrix analysis (dashed blue lines) and compares
them to the constraints when this data is combined with the
projected Planck data set (shaded contours).
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FIG. 2 (color online). This figure shows the Planck projected
constraints on w0, wa obtained using a full likelihood analysis of
simulated Planck data (shaded contours) and a simpler and
quicker likelihood analysis based on R, la, �bh

2 and ns (solid
contours). Information is thus lost by the simplified analysis.
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periment, and this condensed data analysis proceeds much
faster than an analysis involving the full CMB likelihood.

Another way to include a Planck prior in forecasting
constraints from a future dark energy experiment is to do it
via a Planck Fisher matrix. Consider the above likelihood
analysis in comparison to a Fisher matrix treatment. The
Planck Fisher matrix was obtained from the Planck covari-
ance matrix of ðR; la;�bh

2; nsÞ, with the appropriate pa-
rameter transformations for compatibility with the SN Ia
and BAO Fisher matrices. See Appendix B for a descrip-
tion of how the Planck Fisher matrix was obtained and
Table IV for the resulting Planck Fisher matrix. Constraints
on dark energy parameters obtained in this way are also
shown in Fig. 4. Because of the nearly unconstrained
directions, the pure Planck Fisher matrix cannot be in-
verted, as the range of eigenvalues is larger than its preci-
sion. This can be rectified with weak priors on the
parameters (in which case diagonal entries in the inverse
of the Fisher matrix will reflect those priors), or by adding
more data. Figure 3 shows that the Fisher matrix is valid in
spite of its formal problems: the error contours for
Planckþ SN-Iaþ BAO data agree very well with the
others.

V. CONCLUSIONS

We have found that a Gaussian likelihood based on R, la,
�bh

2 and ns effectively summarizes the information in
Planck that is relevant for an analysis of data from SN Ia
and BAO experiments for dark energy parameters under
different dark energy models. Therefore a Planck prior can
be included in this manner. When used in conjunction with
other data that are more sensitive to dark energy such a
treatment of Planck data results in no information loss as
compared to a full analysis, while being much faster.

We provide the full R, la, �bh
2, ns covariance matrix

that is required to define such a likelihood from Planck. We
also provide a Planck Fisher matrix for people who prefer
to use the Fisher matrix route to forecasting constraints for
a future experiment. Using such a Planck prior we have
obtained the type of constraints that may be expected from
a stage III SN Ia and BAO survey. Of course the prescrip-
tion can also be used once data from all these experiments
have actually been obtained (i.e. the prescription is not just
for forecasting).
In the above analysis we found that it was not strictly

necessary to include ns given our conservative treatment of
BAO data. A fuller treatment of BAO data such as one that
included the shape of the matter power spectrum rather
than the transverse and line of sight distances to the red-
shifts of the BAO survey deduced from the BAO scales in
the corresponding directions, would require the primordial
power spectrum parameters including ns to be considered a
variable in the BAO part of the analysis. For this reason we
have included ns in our prescription, and marginalized over
it in our results.
While this work was in progress [17] considered a

likelihood analysis involving the locations of the peaks
and troughs in the CMB spectrum observed by WMAP
to constrain dark energy parameters in combination
with recent BAO data. This offers another way to include
information from the CMB in a likelihood analysis of
BAO and SN Ia data. It involves fitting formulas for the
locations of the extrema presented in [26]. Fitting formulas
have been derived to account for certain prerecombination
effects that via the early ISW effect can affect the position
of the first peak relative to the higher peaks. In our
formalism we would have to recompute the R, la, �bh

2

and ns constraints for each new prerecombination sce-
nario, such as involving a nonzero neutrino mass, involv-
ing tensors and/or the running of the scalar spectral
index, or else include these parameters in the covariance
matrix. On the other hand, our approach is arguably sim-
pler to implement, and at least as accurate within its
domain of applicability (since it additionally uses R as
an effective measure of peak height). Also in their ap-
proach new fitting formulas would have to be derived to
take into account new physics that had not already been
considered.

TABLE IV. Fisher matrix for ðw0; wa;�DE;�k; !m;!b; nsÞ derived from the covariance matrix for ðR; la;�bh
2; nsÞ from Planck.

w0 wa �DE �k !m !b ns

w0 :172276Eþ 06 :490320Eþ 05 :674392Eþ 06 �:208974Eþ 07 :325219Eþ 07 �:790504Eþ 07 �:549427Eþ 05
wa :490320Eþ 05 :139551Eþ 05 :191940Eþ 06 �:594767Eþ 06 :925615Eþ 06 �:224987Eþ 07 �:156374Eþ 05
�DE :674392Eþ 06 :191940Eþ 06 :263997Eþ 07 �:818048Eþ 07 :127310Eþ 08 �:309450Eþ 08 �:215078Eþ 06
�k �:208974Eþ 07 �:594767Eþ 06 �:818048Eþ 07 :253489Eþ 08 �:394501Eþ 08 :958892Eþ 08 :666335Eþ 06
!m :325219Eþ 07 :925615Eþ 06 :127310Eþ 08 �:394501Eþ 08 :633564Eþ 08 �:147973Eþ 09 �:501247Eþ 06
!b �:790504Eþ 07 �:224987Eþ 07 �:309450Eþ 08 :958892Eþ 08 �:147973Eþ 09 :405079Eþ 09 :219009Eþ 07
ns �:549427Eþ 05 �:156374Eþ 05 �:215078Eþ 06 :666335Eþ 06 �:501247Eþ 06 :219009Eþ 07 :242767Eþ 06

TABLE III. Normalized covariance matrix for
ðR; la;�bh

2; nsÞ from Planck.

R la �bh
2 ns

�k � 0

R 1. 0.553856 �0:592359 �0:832527
la 0.553856 1. �0:465820 �0:491026
�bh

2 �0:592359 �0:465820 1. 0.372425

ns �0:832527 �0:491026 0.372425 1.
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APPENDIX A: DETAILED DESCRIPTION AND
FORMULAS

The Planck satellite will deliver data of such a high
quality that even small changes in parameters like the
CMB temperature can have a significant impact. For this
reason we summarize here the relevant formulas used in
this paper. Generally they are those used by CAMB.

The comoving distance to a redshift z is given by

rðzÞ ¼ cH�1
0 j�kj�1=2sinn½j�kj1=2�ðzÞ�

�ðzÞ ¼
Z z

0

dz0

Eðz0Þ ; EðzÞ ¼ HðzÞ=H0

(A1)

where �k ¼ �k=H2
0 with k denoting the curvature con-

stant, and sinnðxÞ ¼ sinðxÞ, x, sinhðxÞ for�k < 0,�k ¼ 0,
and �k > 0 respectively, and

EðzÞ ¼ ½�mð1þ zÞ3 þ�radð1þ zÞ4 (A2)

þ�kð1þ zÞ2 þ�XXðzÞ�1=2 (A3)

with �X ¼ 1��m ��rad ��k, and the dark energy
density function XðzÞ � �XðzÞ=�Xð0Þ.

We calculate the distance to decoupling, zCMB, via the
fitting formula in [27]. CAMB [28] uses the same fitting
formula. We note that simply using a constant for zCMB

results in a shift in the inferred values of the CMB shift
parameters at levels of precision corresponding to Planck.

The comoving sound horizon at recombination is given by

rsðzCMBÞ ¼
Z tCMB

0

csdt

a
¼ cH�1

0

Z 1

zCMB

dz
cs
EðzÞ ;

¼ cH�1
0

Z aCMB

0

daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ �RbaÞa4E2ðzÞp ; (A4)

where a is the cosmic scale factor, aCMB ¼ 1=ð1þ zCMBÞ,
and a4E2ðzÞ ¼ �rad þ�maþ�ka

2 þ�XXðzÞa4. The ra-
diation density is computed using the Stefan-Boltzmann
formula from the CMB temperature, assuming 3.04 fami-

lies of massless neutrini. The sound speed is cs ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ �RbaÞ

p
, with �Rba ¼ 3�b=ð4��Þ, �Rb ¼

31500�bh
2ðTCMB=2:7 KÞ�4.2

APPENDIX B: FISHER MATRIX APPROACH

The Fisher matrix, F��, for a set of parameters p can be

derived from the Fisher matrix, Fij, for a set of equivalent

parameters q as follows [22]

F�� ¼ X
ij

@pi

@q�
Fij

@pj

@q�
: (B1)

The Fisher matrix of q ¼ ðR; la; !b; nsÞ is the inverse of
the covariance matrix of q (given in Tables I and II). Note
that the CMB shift parameters R and la encode all the
information on dark energy parameters. For any given dark
energy model parametrized by the parameter set pX, the
relevant Fisher matrix for p ¼ ðpX;�DE;�k; !m;!b; nsÞ
can be found using Eq. (B1). For the case most discussed in
the literature, wXðzÞ ¼ w0 þ wað1� aÞ, pX ¼ ðw0; waÞ.
In order to find the Fisher matrix for

ðw0; wa;�DE;�k; !m;!b; nsÞ, the following derivatives
are needed:

@R

@wi
¼ @TðzCMBÞ

@wi

ffiffiffiffiffiffiffiffi
�m

p
cosn½j�kj1=2�ðzCMBÞ� @ lnR

@�DE

¼ � 1

2�m

þ j�kj1=2 cosn½j�kj1=2�ðzCMBÞ�
sinn½j�kj1=2�ðzCMBÞ�

@�ðzCMBÞ
@�DE

@ lnR

@�k

¼ � 1

2�m

� 1

2�k

þ j�kj1=2 cosn½j�kj1=2�ðzCMBÞ�
sinn½j�kj1=2�ðzCMBÞ�

�
@�ðzCMBÞ

@�k

þ �ðzCMBÞ
2�k

�
@R

@!m

¼ 0;
@R

@!b

¼ 0;

@R

@ns
¼ 0

@ lnla
@wi

¼ j�kj1=2 cosn½j�kj1=2�ðzCMBÞ�
sinn½j�kj1=2�ðzCMBÞ�

@�ðzCMBÞ
@wi

� @ ln½H0rsðzCMBÞ�
@wi

@ lnla
@�DE

¼ j�kj1=2 cosn½j�kj1=2�ðzCMBÞ�
sinn½j�kj1=2�ðzCMBÞ�

@�ðzCMBÞ
@�DE

� @ ln½H0rsðzCMBÞ�
@�DE

@ lnla
@�k

¼ � 1

2�k

þ j�kj1=2 cosn½j�kj1=2�ðzCMBÞ�
sinn½j�kj1=2�ðzCMBÞ�

�
@�ðzCMBÞ

@�k

þ �ðzCMBÞ
2�k

�
� @ ln½H0rsðzCMBÞ�

@�k

@ lnla
@wm

¼ �@ ln½H0rsðzCMBÞ�
@wm

;
@ lnla
@wb

¼ �@ ln½H0rsðzCMBÞ�
@wb

;
@la
@ns

¼ 0
@!b

@!b

¼ 1;
@!b

@pi

¼ 0

ðpi � !bÞ @ns
@ns

¼ 1;
@ns
@pi

¼ 0 ðpi � nsÞ;

(B2)

2We used a TCMB ¼ 2:726, and �Rb ¼ 30000�bh
2 as defined in CAMB, noting that precision can be improved by updating these

definitions.
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where wi ¼ ðw0; waÞ, and cosnðxÞ ¼ cosðxÞ, x, coshðxÞ for
�k < 0, �k ¼ 0, and �k > 0, respectively.

Note that in the limit of �k ¼ 0,

@ lnR

@�k

¼ @ ln�ðzCMBÞ
@�k

� 1

2�m

þ ½�ðzCMBÞ�2
6

@ lnla
@�k

¼ @ ln�ðzCMBÞ
@�k

� @ ln½H0rsðzCMBÞ�
@�k

þ ½�ðzCMBÞ�2
6

:

(B3)

For the fiducial model considered in this paper, the
Planck Fisher matrix for ðw0; wa;�DE;�k; !m;!b; nsÞ is
derived from the Planck covariance matrix of
ðR; la; !b; nsÞ given in Table IV.

APPENDIX C: USING OUR LIKELIHOOD FOR
HAMILTONIAN MONTE CARLO

While most cosmological codes use the standard
Metropolis MCMC algorithm, there are other MC ap-
proaches which may provide faster exploration especially
in high dimensions. One example is Hamiltonian
Monte Carlo (HMC) [29,30] where each parameter �i
acquires a partner corresponding to a momentum variable
�i, and the log-likelihood is regarded as a potential. The
momenta are drawn from a univariate normal probability
distribution and the next step in the MCMC exploration is
chosen based on a Hamiltonian motion in this system, with
total energy E ¼ p2=2þ �2ð�Þ=2. At the end the momenta
are marginalized over, which provides an ensemble of
samples of the remaining parameters which is drawn
from the posterior distribution. The main advantage of
the HMC method is that the Hamiltonian motion naturally
follows even complicated shapes of the posterior and in
principle every proposal is accepted. The main drawback is
that, in order to follow the trajectory, one needs to evaluate
the gradient of the log-likelihood with respect to the pa-

rameters for dozens of steps, for every single proposal.
Each proposal therefore requires hundred(s) of likelihood
evaluations if the gradient cannot be computed
analytically.
Since we have a reasonable approximation of the like-

lihood, we can instead use this approximation to compute
the gradients. This means that the motion follows the
ðR; la; !b; nsÞ likelihood and at the end the approximate
and the true likelihood are compared. If the true likelihood
is worse than the approximate one, then we can either
assign the ratio as a weight to the new point (importance
sampling) or test for rejection with the usual criterion
(rejection sampling). If the true likelihood is better, then
we have to assign the ratio as a weight>1. For this to work
we must ensure that the approximate likelihood does not
exclude parameter regions that the true likelihood would
allow.
In our case we find that the procedure works quite well

for the case where the Planck data is combined with the SN
Ia and BAO data, since there the information loss is neg-
ligible.3 Indeed, we find about 20% efficiency (i.e. roughly
every 5th proposal is accepted, or correspondingly, the
average weight of each point is 0.2), which is very good,
especially since we can move a long distance and obtain
completely uncorrelated samples. Using only the Planck
data, we lose a lot of information, and less than 2% of the
proposals are accepted. This is still not too bad, consider-
ing the complexity of the shape of the posterior, and that
the resulting samples are completely decorrelated.
Additionally, burn-in is very quick for HMC and there is
no need for initial runs to determine the optimal proposal
matrix.
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