5 research outputs found

    Actividad acaricida de extractos etanólicos de tres genotipos de Leucaena spp. sobre Rhipicephalus microplus en condiciones in vitro

    Get PDF
    The tick Rhipicephalus microplus is known to develop resistance against some commercial acaracides, driving a search for natural alternatives. An evaluation was done of the acaricide activity against adult and larval R. microplus of ethanol extracts from three Leucaena spp. genotypes: L. leucocephala (Lam.) de Wit (Native); L. leucocephala (Cunningham); and L. Leucocephala x L. padilla (KX2). Larval immersion and adult immersion tests were used to evaluate acaricide activity. Secondary metabolite profiles of the three genotypes were generated using analytical chromatographic plates. Against the larvae, the 50% extract concentration exhibited 91.68% mortality for the Cunningham genotype, 82.00% for the KX2 and 54.06% for the Native. The Native genotype extract was most effective against adults with a 50% mortality at a 20% concentration. Flavonoids and terpenes were identified in all three genotypes and are probably responsible for their acaricide activity. The Leucaena spp. Cunningham and KX2 extracts were effective against R. microplus larvae, but further research is needed to identify the metabolites that provide this acaricide activity, be it individually or synergistically.El objetivo del presente estudio fue evaluar la actividad acaricida de extractos etanólicos de tres genotipos de Leucaena spp: L. leucocephala (Lam.) de Wit (Nativa), L. leucocephala (Cunningham) y L. Leucocephala x L. padilla (KX2), sobre larvas y garrapatas adultas de Rhipicephalus microplus. Para evaluar la actividad acaricida se usaron las pruebas de inmersión de larvas e inmersión de adultas. Asimismo, en los extractos de los tres genotipos de Leucaena spp. se analizó el perfil de metabolitos secundarios mediante placas analíticas de cromatografía. Los extractos a concentración del 50 % mostraron una mortalidad en larvas de 91.68, 82.00 y 54.06 % para los genotipos Cunningham, KX2 y Nativa, respectivamente. El genotipo Nativa presentó el mejor comportamiento para el control de R. microplus adultas con un 50 % de mortalidad a la concentración de 20 %. En los extractos se identificaron flavonoides y terpenos que pudieran ser los responsables de la actividad acaricida de los tres genotipos de Leucaena; sin embargo, se requiere de más estudios para identificar los metabolitos que tengan una acción individual o en sinergia en el control de R. microplus

    Residual feed intake and enteric methane production in growing Pelibuey sheep

    No full text
    SIMPLE SUMMARY: This study determined residual feed intake (RFI), volatile fatty acid (VFA) production and enteric methane (CH(4)) from growing Pelibuey sheep. In this case, 12 non-castrated Pelibuey were classified as low, medium, and high RFI. Efficient lambs (low-RFI) had lower intakes of dry matter, organic matter, crude protein and neutral detergent fiber. Those lambs produced less CH(4). Feed intake of low RFI lambs was approximately 16% lower (p < 0.05) while growth rate was not significantly different. Their average energy loss, expressed as CH(4) production per kilogram of metabolic weight, was 17% lower (p < 0.05). ABSTRACT: This study was carried out to evaluate the residual feed intake (RFI), volatile fatty acid (VFA) production and enteric methane (CH(4)) from growing Pelibuey sheep. In this case, 12 non-castrated Pelibuey with an initial average live weight (LW) of 21.17 ± 3.87 kg and an age of 3 months, were housed in individual pens and fed a basal diet with 16% of crude protein and 11 MJ ME for 45 days. Dry matter intake (DMI) was measured and the daily weight gain (DWG) was calculated using a linear regression between the LW and experimental period. Mean metabolic live weight (LW(0.75)) was calculated. RFI was determined by linear regression with DWG and LW(0.75) as independent variables. Lambs were classified as low, medium, and high RFI. Feed efficiency was determined as DWG/DMI. For determining rumen pH, ammonia nitrogen concentration NH(3)-N)(,) and VFA, ruminal fluid was obtained using an esophageal probe on day 40. Feed intake of low RFI lambs was approximately 16% lower (p < 0.05) while growth rate was not significantly different. Their average energy loss, expressed as CH(4) production per kilogram of metabolic weight, was 17% lower (p < 0.05)

    Effect of Chitosan and Naringin on Enteric Methane Emissions in Crossbred Heifers Fed Tropical Grass

    No full text
    Simple Summary The increase in human population and the concomitant rise in demand for animal protein have contributed to augment enteric methane emissions. It is imperative to reduce methane, increase sustainable production, avoid the use of chemical compounds, and guarantee quality products for the consumer. Chitosan and naringin possess antimicrobial properties, and they have shown their capacity to reduce methane in in vitro trials. This study investigated their effects as feed additives given to improve ruminal fermentation and nutrient utilization and decrease methane in crossbred heifers fed tropical grass. In in vitro experiments, chitosan and naringin at three levels (0, 1.5, 3.0 g/kg) showed significant methane reductions when 1.5 g/kg of chitosan was included. The in situ study did not reveal changes in rumen degradability with the inclusion of the additives. However, in in vivo assays, chitosan and naringin at 1.5 or 3.0 g/kg dry matter intake or the combination of both compounds (1.5 and 1.5 g/kg) given directly into the rumen did not induce changes in rumen fermentation, methane production, or nutrient utilization. However, given the promising evidence from other studies, more research needs to be conducted to clarify the potential effects of chitosan and naringin in animal production. Abstract In order to meet consumer needs, the livestock industry is increasingly seeking natural feed additives with the ability to improve the efficiency of nutrient utilization, alternatives to antibiotics, and mitigate methane emissions in ruminants. Chitosan (CHI) is a polysaccharide with antimicrobial capability against protozoa and Gram-positive and -negative bacteria, fungi, and yeasts while naringin (NA) is a flavonoid with antimicrobial and antioxidant properties. First, an in vitro gas production experiment was performed adding 0, 1.5, 3.0 g/kg of CHI and NA under a completely randomized design. The substrate containing forage and concentrate in a 70:30 ratio on a dry matter (DM) basis. Compounds increased the concentration of propionic acid, and a significant reduction in methane production was observed with the inclusion of CHI at 1.5 g/kg in in vitro experiments (p 0.05), DM intake and digestibility of (p > 0.05), and enteric methane emissions (p > 0.05). CHI at a concentration of 1.5 g/kg DM in in vitro experiments had a positive effect on fermentation pattern increasing propionate and reduced methane production. In contrast, in the in vivo studies, there was not a positive effect on rumen fermentation, nor in enteric methane production in crossbred heifers fed a basal ration of tropical grass. Keywords: additive; flavonoid; chitin; antimicrobial action; greenhouse gase
    corecore