48 research outputs found

    RetrOryza: a database of the rice LTR-retrotransposons

    Get PDF
    Long terminal repeat (LTR)-retrotransposons comprise a significant portion of the rice genome. Their complete characterization is thus necessary if the sequenced genome is to be annotated correctly. In addition, because LTR-retrotransposons can influence the expression of neighboring genes, the complete identification of these elements in the rice genome is essential in order to study their putative functional interactions with the plant genes. The aims of the database are to (i) Assemble a comprehensive dataset of LTR-retrotransposons that includes not only abundant elements, but also low copy number elements. (ii) Provide an interface to efficiently access the resources stored in the database. This interface should also allow the community to annotate these elements. (iii) Provide a means for identifying LTR-retrotransposons inserted near genes. Here we present the results, where 242 complete LTR-retrotransposons have been structurally and functionally annotated. A web interface to the database has been made available (), through which the user can annotate a sequence or search for LTR-retrotransposons in the neighborhood of a gene of interest

    Identification of precursor transcripts for 6 novel miRNAs expands the diversity on the genomic organisation and expression of miRNA genes in rice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The plant miRNAs represent an important class of endogenous small RNAs that guide cleavage of an mRNA target or repress its translation to control development and adaptation to stresses. MiRNAs are nuclear-encoded genes transcribed by RNA polymerase II, producing a primary precursor that is subsequently processed by DCL1 an RNase III Dicer-like protein.</p> <p>In rice hundreds of miRNAs have been described or predicted, but little is known on their genes and precursors which are important criteria to distinguish them from siRNAs. Here we develop a combination of experimental approaches to detect novel miRNAs in rice, identify their precursor transcripts and genes and predict or validate their mRNA targets.</p> <p>Results</p> <p>We produced four cDNA libraries from small RNA fractions extracted from distinct rice tissues. By <it>in silico </it>analysis we selected 6 potential novel miRNAs, and confirmed that their expression requires OsDCL1. We predicted their targets and used 5'RACE to validate cleavage for three of them, targeting a PPR, an SPX domain protein and a GT-like transcription factor respectively.</p> <p>In addition, we identified precursor transcripts for the 6 miRNAs expressed in rice, showing that these precursors can be efficiently processed using a transient expression assay in transfected <it>Nicotiana benthamiana </it>leaves. Most interestingly, we describe two precursors producing tandem miRNAs, but in distinct arrays. We focus on one of them encoding osa-miR159a.2, a novel miRNA produced from the same stem-loop structure encoding the conserved osa-miR159a.1. We show that this dual osa-miR159a.2-osa-miR159a.1 structure is conserved in distant rice species and maize. Finally we show that the predicted mRNA target of osa-miR159a.2 encoding a GT-like transcription factor is cleaved <it>in vivo </it>at the expected site.</p> <p>Conclusion</p> <p>The combination of approaches developed here identified six novel miRNAs expressed in rice which can be clearly distinguished from siRNAs. Importantly, we show that two miRNAs can be produced from a single precursor, either from tandem stem-loops or tandemly arrayed in a single stem-loop. This suggests that processing of these precursors could be an important regulatory step to produce one or more functional miRNAs in plants and perhaps coordinate cleavage of distinct targets in the same plant tissue.</p

    CoNIC Challenge: Pushing the Frontiers of Nuclear Detection, Segmentation, Classification and Counting

    Get PDF
    Nuclear detection, segmentation and morphometric profiling are essential in helping us further understand the relationship between histology and patient outcome. To drive innovation in this area, we setup a community-wide challenge using the largest available dataset of its kind to assess nuclear segmentation and cellular composition. Our challenge, named CoNIC, stimulated the development of reproducible algorithms for cellular recognition with real-time result inspection on public leaderboards. We conducted an extensive post-challenge analysis based on the top-performing models using 1,658 whole-slide images of colon tissue. With around 700 million detected nuclei per model, associated features were used for dysplasia grading and survival analysis, where we demonstrated that the challenge's improvement over the previous state-of-the-art led to significant boosts in downstream performance. Our findings also suggest that eosinophils and neutrophils play an important role in the tumour microevironment. We release challenge models and WSI-level results to foster the development of further methods for biomarker discovery

    Anti-angiogenic VEGFAxxxb transcripts are not expressed in the medio-basal hypothalamus of the seasonal sheep

    No full text
    This study investigated Vegfa expression in the pars tuberalis (PT) of the pituitary and medio-basal hypothalamus (MBH) of sheep, across seasons and reproductive states. It has recently been proposed that season impacts alternative splicing of Vegfa mRNA in the PT, which shifts the balance between angiogenic VEGFAxxx and anti-angiogenic VEGFAxxxb isoforms (with xxx the number of amino acids of the mature VEGFA proteins) to modulate seasonal breeding. Here, we used various RT-PCR methodologies and analysis of RNAseq datasets to investigate seasonal variation in expression and splicing of the ovine Vegfa gene. Collectively, we identify 5 different transcripts for Vegfa within the ewe PT/MBH, which correspond to splicing events previously described in mouse and human. All identified transcripts encode angiogenic VEGFAxxx isoforms, with no evidence for alternative splicing within exon 8. These findings led us to investigate in detail how "Vegfaxxxb-like" PCR products could be generated by RT-PCR and misidentified as endogenous transcripts, in sheep and human HEK293 cells. In conclusion, our findings do not support the existence of antiangiogenic VEGFAxxxb isoforms in the ovine PT/MBH and shed new light on the interpretation of prior studies, which claimed to identify Vegfaxxxb isoforms by RT-PCR

    Deep landscape update of dispersed and tandem repeats in the genome model of the red jungle fowl, Gallus gallus, using a series of de novo investigating tools

    Get PDF
    The program RepeatMasker and the database Repbase-ISB are part of the most widely used strategy for annotating repeats in animal genomes. They have been used to show that avian genomes have a lower repeat content (8–12 %) than the sequenced genomes of many vertebrate species (30–55 %). However, the efficiency of such a library-based strategies is dependent on the quality and completeness of the sequences in the database that is used. An alternative to these library based methods are methods that identify repeats de novo. These alternative methods have existed for a least a decade and may be more powerful than the library based methods. We have used an annotation strategy involving several complementary de novo tools to determine the repeat content of the model genome galGal4 (1.04 Gbp), including identifying simple sequence repeats (SSRs), tandem repeats and transposable elements (TEs). We annotated over one Gbp. of the galGal4 genome and showed that it is composed of approximately 19 % SSRs and TEs repeats. Furthermore, we estimate that the actual genome of the red jungle fowl contains about 31–35 % repeats. We find that library-based methods tend to overestimate TE diversity. These results have a major impact on the current understanding of repeats distributions throughout chromosomes in the red jungle fowl. Our results are a proof of concept of the reliability of using de novo tools to annotate repeats in large animal genomes. They have also revealed issues that will need to be resolved in order to develop gold-standard methodologies for annotating repeats in eukaryote genomes

    Evolutionary relationships of iridoviruses and divergence of ascoviruses from invertebrate iridoviruses in the superfamily Megavirales

    No full text
    The family Iridoviridae of the superfamily Megavirales currently consists of five genera. Three of these, Lymphocystivirus, Megalocytivirus and Ranavirus, are composed of species that infect vertebrates, and the other two, Chloriridovirus and Iridovirus, contain species that infect invertebrates. Until recently, the lack of genomic sequence data limited investigation of the evolutionary relationships between the invertebrate iridoviruses (IIVs) and vertebrate iridoviruses (VIVs), as well as the relationship of these viruses to those of the closely related family Ascoviridae, which only contains species that infect insects. To help clarify the phylogenetic relationships of these viruses, we recently published the annotated genome sequences of five additional IIV isolates. Here, using classical approaches of phylogeny via maximum likelihood, a Bayesian approach, and resolution of a core protein tree, we demonstrate that the invertebrate and vertebrate IV species constitute two lineages that diverged early during the evolution of the family Iridoviridae, before the emergence of the four IIV clades, previously referred to as Chloriridoviruses, Polyiridoviruses, Oligoiridoviruses and Crustaceoiridoviruses. In addition, we provide evidence that species of the family Ascoviridae have a more recent origin than most iridoviruses, emerging just before the differentiation between the Oligoiridoviruses and Crustaceoiridovirus clades. Our results also suggest that after emergence, based on their molecular clock, the ascoviruses evolved more quickly than their closest iridovirus relatives

    Transposase concentration controls transposition activity: Myth or reality?

    No full text
    Deciphering the mechanisms underlying the regulation of DNA transposons might be central to understanding their function and dynamics in genomes. From results obtained under artificial experimental conditions, it has been proposed that some DNA transposons self-regulate their activity via overproduction inhibition (OPI), a mechanism by which transposition activity is down-regulated when the transposase is overconcentrated in cells. However, numerous studies have given contradictory results depending on the experimental conditions. Moreover, we do not know in which cellular compartment this phenomenon takes place, or whether transposases assemble to form dense foci when they are highly expressed in cells. In the present review, we focus on investigating the data available about eukaryotic transposons to explain the mechanisms underlying OPI. Data in the literature indicate that members of the IS630-Tc1-mariner, Hobo-Ac-Tam, and piggyBac superfamilies are able to use OPI to self-regulate their transposition activity in vivo in most eukaryotic cells, and that some of them are able to assemble so as to form higher order soluble oligomers. We also investigated the localization and behavior of GFP-fused transposases belonging to the mariner, Tc1-like, and piggyBac families, investigating their ability to aggregate in cells when they are overexpressed. Transposases are able to form dense foci when they are highly expressed. Moreover, the cellular compartments in which these foci are concentrated depend on the transposase, and on its expression. The data presented here suggest that sequestration in cytoplasmic or nucleoplasmic foci, or within the nucleoli, might protect the genome against the potentially genotoxic effects of the non-specific nuclease activities of eukaryotic transposases
    corecore