186 research outputs found

    Development of an Interpretive Simulation Tool for the Proton Radiography Technique

    Get PDF
    Proton radiography is a useful diagnostic of high energy density (HED) plasmas under active theoretical and experimental development. In this paper we describe a new simulation tool that interacts realistic laser-driven point-like proton sources with three dimensional electromagnetic fields of arbitrary strength and structure and synthesizes the associated high resolution proton radiograph. The present tool's numerical approach captures all relevant physics effects, including effects related to the formation of caustics. Electromagnetic fields can be imported from PIC or hydrodynamic codes in a streamlined fashion, and a library of electromagnetic field `primitives' is also provided. This latter capability allows users to add a primitive, modify the field strength, rotate a primitive, and so on, while quickly generating a high resolution radiograph at each step. In this way, our tool enables the user to deconstruct features in a radiograph and interpret them in connection to specific underlying electromagnetic field elements. We show an example application of the tool in connection to experimental observations of the Weibel instability in counterstreaming plasmas, using 108\sim 10^8 particles generated from a realistic laser-driven point-like proton source, imaging fields which cover volumes of 10\sim10 mm3^3. Insights derived from this application show that the tool can support understanding of HED plasmas.Comment: Figures and tables related to the Appendix are included in the published journal articl

    Twiss parameters and beam matrix formulation of generalized Courant-Snyder theory for coupled transverse beam dynamics

    Get PDF
    Courant-Snyder (CS) theory for one degree of freedom has recently been generalized by Qin and Davidson to the case of coupled transverse dynamics with two degrees of freedom. The generalized theory has four basic components of the original CS theory, i.e., the envelope equation, phase advance, transfer matrix, and the CS invariant, all of which have their counterparts in the original CS theory with remarkably similar expressions and physical meanings. In this brief communication, we further extend this remarkable similarity between the original and generalized CS theories and construct the Twiss parameters and beam matrix in generalized forms for the case of a strong coupling system. (C) 2010 American Institute of Physics. [doi:10.1063/1.3474930]close7

    Charged Particles in a 2+1 Curved Background

    Full text link
    The coupling to a 2+1 background geometry of a quantized charged test particle in a strong magnetic field is analyzed. Canonical operators adapting to the fast and slow freedoms produce a natural expansion in the inverse square root of the magnetic field strength. The fast freedom is solved to the second order. At any given time, space is parameterized by a couple of conjugate operators and effectively behaves as the `phase space' of the slow freedom. The slow Hamiltonian depends on the magnetic field norm, its covariant derivatives, the scalar curvature and presents a peculiar coupling with the spin-connection.Comment: 22 page

    Power Exhaust Concepts and Divertor Designs for Japanese and European DEMO Fusion Reactors

    Get PDF
    Concepts of the power exhaust and divertor design have been developed, with a high priority in the pre-conceptual design phase of the Japan-Europe Broader Approach DEMO Design Activity. A common critical issue is the large power exhaust and its fraction in the main plasma and divertor by the radiative cooling. Different exhaust concepts in the main plasma and divertor have been developed for JA and EU DEMOs. JA proposed a conventional closed divertor geometry to challenge large Psep/Rp handling of 30-35 MWm-1 in order to maintain the radiation fraction in the main plasma at the ITER-level (fradmain = Pradmain/Pheat ~0.4) and higher plasma performance. EU challenged both increasing fradmain to ~0.65 and handling the ITER-level Psep/Rp in the open divertor geometry. Power exhaust simulations have been performed by SONIC (JA) and SOLPS5.1 (EU) with corresponding Psep = 250-300 MW and 150-200 MW, respectively. Both results showed that large divertor radiation fraction (Praddiv/Psep 0.8) was required to reduce both peak qtarget ( 10MWm-2) and Te,idiv. In addition, the JA divertor performance with EU-reference Psep of 150MW showed benefit of the closed geometry to reduce the peak qtarget and Te,idiv near the separatrix, and to produce the partial detachment. Integrated designs of the water cooled divertor target, cassette and coolant pipe routing have been developed in both EU and JA, based on the tungsten (W) monoblock concept with Cu-alloy pipe. For year-long operation, DEMO-specific risks such as radiation embrittlement of Cu-interlayers and Cu-alloy cooling pipe were recognized, and both foresee higher water temperature (130-200 °C) compared to that for ITER. At the same time, several improved technologies of high heat flux components have been developed in EU, and different heat sink design, i.e. Cu-alloy cooling pipes for targets and RAFM steel ones for the baffle, dome and cassette, was proposed in JA. The two approaches provide important case-studies of the DEMO divertor, and will significantly contribute to both DEMO designs
    corecore