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ABSTRACT: MHD computation demonstrates that feedback can sustain reversal and reduce loop

voltage in resistive-shell reversed field pinch (RFP)plasmas. Edge feedback on ~2R/a tearing

modes resonant near axis is found to restore plasma parameters to nearly their levels with a close-

fitting conducting shell. When original dynamo modes are stabilized, neighboring tearing modes

grow to maintain the RFP dynamo more efficiently. This suggests that experimentally observed

limits on RFP pulselengths to the order of the shell time can be overcome by applying feedback to a

few helical modes.

1. INTRODUCTION

The Reversed Field Pinch (RFP) has several attractive features as a possible

fusion reactor, including weak magnetic field, high beta, high energy density, and

relatively small size. However, one disadvantage is the requirement for a close-

fitting conducting shell. Both experiment1,2,3, 4 and theory 5 suggest that the

stabilizing infl_,ence of the shell is necessary. With a conducting shell, MHD

fluctuations saturate and the pulse length is limited only by the available volt-

seconds. With a resistive shell, fluctuations grow well above their amplitudes

with a conducting shell, with an accompanying increase in the toroidal loop

voltage. It has been observed in experiment and MHD computation6, ? that

growing resistive shell modes destroy RFP reversal on the order of the shell time

for soak-in of a magnetic field. This presents a fundamental problem, since the

stabilizing role of any shell with finite conductivity will vanish on the long
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time-scale of a steady-state reactor. The presence of a conducting shell aiso

complicates fine control of the equilibrium by application of a vertical magnetic

field.

The dominant RFP fluctuations with either a conducting or resistive shell

are internally resonant tearing modes, which are responsible for the dynamo

sustainment of the RFP8. These modes convert poloidal field into mean toroidal

field (BT) and provide edge reversal of BT by driving current at the plasma edge

through an effective fluctuation-induced electric field <v x B> (where v and B

are velocity and magnetic field fluctuations and < > is an average over the

poloidal and toroidal directions). In the plasma core, however, the direction of

the fluctuation-induced field is opposed to the applied electric field. Therefore

growing dynamo modes also suppress plasma current, and thus necessitate a

higher toroidal loop voltage to sustain the current. These resistive shell modes

are small in number (approximately equal to the aspect ratio, R/a) and global in

spatial structure, with poloidal and toroidal mode numbers ro=l, in I> 2R/a. We

use MHD computation to examine the feasibility, from a physics perspective, of a

feedback solution to the resistive shell problem.

Restoration of the helical mode amplitudes and loop voltage to the

comducting shell levels would constitute a solution. We investigate edge
J

feedback suppression of these modes as a means of restoring mode amplitudes

and loop voltage to conducting shell levels, without suppressing the dynamo. In_

these tests, the conducting shell is replaced by helical coils which hold the radial

magnetic field to zero at the plasma boundary, for a few specific helical modes.

This boundary condition for targeted helical modes is easily implemented in a

nonlinear, resistive, pseudospectral 3D MHD code. (Linear calculations cannot

adequately address the problem since nonlinear mode coupling and quasilinear

profile modifications are key to RFP dynamics. 9 ) There has been a limited



3t

experimental test of feedback of a single mode 10 which agrees well with our

numerical tests. In addition, circuits have been examined for related feedback

schemes to address engineering feasibility questions.II, 12

We find that, in the absence of a conducting shell, selected feedback of the

dominant tearing modes resonant near axis reduces their fluctuation amplitudes

to nearly the levels with a full conducting shell and improves plasma

parameters. The spatial structure of feedback-targeted dynamo modes is also

altered so that, to first order, they no longer suppress plasma current nor pr(_vide

dynamo sustainment. The dynamo role is promptly assumed by neighboring

modes in k-space. Feedback on as few as one mode can sustain the RFP for many

resistive shell times, permit lower-voltage operation, and reduce flux surface

tearing (thereby reducing transport and wall interactions), approaching plasma

parameters characteristic with a conducting shell.

In the remainder of this paper, we will review the numerical model used

in these calculations (section II), describe the feedback schemes, (section III), detail

feedback results (section IV), and summarize our work (section V).

2. NUMERICAL MODEL

Ali calculations presented in this paper were generated with a 3D

magnetohydrodynamic (MHD) code 13 with nonideal boundary conditionsl4, 7.

This program (DEBS) solves the normalized, pressureless, resistive, compressible

MHD equations:

d_/dt =-137 + S _x_

pd_/(:tt =-Sp _.7_ + vV2_ + S 7xff
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=v×X

J

where the magnetic Reynolds number S - 'I_R/'_A, and the Alfv6n time "CA=a/vA.

Times are normalized to the resistive diffusion time ZR=bt0a2/11, velocities are

normalized to the Alfw,_n velocity VA = B0/(_p0) 1/2, and lengths are normalized

to the plasma minor radius, a, where the magnetic field B and mass density p are

measured in units of a characteristic field B0 and a characteristic density Po,

respectively. The viscous damping parameter v is chosen for numerical stability.

The gauge in which V_=0 has been chosen, where • is the electrostatic

potential.

The DEBS code solves an initial value problem in _, _v, _, and X, starting

with modified Bessel-function model profiles typically chosen to yield a pinch

parameter (9 = 1.59. In all cases, S is 6000, at least an order of magnitude lower

than experimental Reynolds numbers; this results in a narrower numerical
z

mode spectrum than observed experimentally. The pressure gradient is set to

zero, valid for low-beta plasmas; this limits differentiation of diffusion and

dynamo timescales 15, but accurately models evolution of profiles and flux

surface reconnections characteristic of dynamo "sawteeth ''16. Density p and

resistivity 11profiles are not advanced in time, and plasma current and toroidal

flux are held constant once steady state is reached. Conducting wall boundary

" conditions are maintained as the MHD equations are advanced in time until a

steady-state RFP equilibrium is reached. Resistive-shell boundary conditions are

- then imposed on this equilibrium, which is advanced with or without feedback. ,

Resistive-shell RFPs typically evolve away from the initial equilibrium as

- fluctuations grow, and fail to reach a true steady state in the absence of feedback.

DEBS pseudo-spectrally models a periodic cylinder of length L=2rtR, where
-
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R is the major radius. Equations are finite-differenced radially and Fourier

analyzed in the B and z directions: linear terms are advanced in Fourier space

and nonlinear terms in configuration space, using Fast Fourier Transforn_ (FFT)

routines. 17 Use of a semi-implicit algorithm eliminates Alfv6n wave time-step

constraints and allows tracking of phenomena on longer resistive diffusion

timescales 15 . It has been shown numerically that m=2 modes dissipate energy

cascaded to short wavelengths, thus are important in determining the width in

n-space of the magnetic energy spectrum, but that m > 2 contribute little to RFP

dynamics 18 . It has also been shown analytically 19 and experimentally2°, 21 that

the dominant helical modes have ro=l, n,_-2R/a, which resonate near the RFP

axis. Higher-n modes (eg -n_4R/a) resonate closer to the plasma edge, are spaced

more closely together, and have amplitudes an order of magnitude lower. Since

modes couple as (ro,n) + (m',n') _ (m_+m', n_n'), the smallest scale m=2 modes

of significance will have -n _8(R/a). Therefore, to include ali modes important

in the present study, m=0,+l, +2 and n=0,+1,+2, ...,+-(8R/a) are retained after de-

aliasing. The radial grid is resolved to 1/127 minor radius.

3. FEEDBACK SCHEME

The feedback boundary conditions are applied numerically to a mode

(ro,n) targeted for stabilization by specifying that Br(ro,n) vanish at r=a. (A

resistive shell is also situated at the plasma radius a.) The pseudospectral nature

of the code is exploited to impose boundary conditions on each helical mode

independently. In Fourier space, Br = (VxA)r = i(mAz/r-kA0), assuming

quantities vary as f(r)ei( m0 + kz + _) where k=n/R is the axial wavenumber.

Choosing Br=0 determines A_(m,n) and Az(m,n) for the targeted mode at r=a,

, T, ' '



6'

consistent with the remaining boundary conditions: that Jr=0, Eo(a)=0, Ez(a)= the

edge field applied to sustain plasma current J = (Ell' EF)/11, and v(a)=0 for al!

modes except that vr(a)=-EzBo/SB 2 for the mean 22.

The feedback boundary condition can be realized experimentally by

winding helical current-carrying coils on the resistive shell. The numerical

scheme is equivalent to a set of helical coils (one sine and one cosine) to feedback

on each mode (ro,n), wound with the same pitch as the magnetic field line at rs

with which the mode resonates, where q(rs)=m/n. The helical coils are perfectly

conducting, drawing whatever current necessary (from an external power source)

to keep Br(ro,n)=0 for the targeted mode. There is no time delay between

"sensing" an edge Br and nulling it, and the feedback response is perfectly out of

phase with the target mode.

4. FEEDBACK RESULTS

4.1 Description

Our numerical experiment comprises a number of nonlinear resistive-

shell RFP runs which suppress different subsets of tearing modes with the

feedback scheme described above. We seek to characterize the smallest subset of

feedback-targeted modes for which plasma parameters approach the conducting-

shell case. Effective feedback should minimize mode growth and loop voltage in
-j

the a[:sence of a conducting shell, while maintaining the reversed-field

configuration.

_ Changes in profiles of the paralM fluctuation-induced electric field EFII =

-<_x_>._/I ]_1 are key in interpreting results of the various feedback cases

presented below. Dominant, axially resonant m=l tearing modes typically have

II.....
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positive EFI I(m,n) in the core, and negative EF II(m,n) at the edge, changing sign

near the modal resonant surface 23. Since edge _ is primarily poloidal in the

RFP, edge EFII is primarily poloidal Negative E® at a radius r drives toroiclal flux

inside r, sustaining core Bz against diffusion, a Insofar as the shell is a flux

conserver, negative flux is generated outside r, which can reverse edge Bz and

contribute to RFP stability by enhancing shear. "Dynamo modes" are by

definition those supplying the bulk of negative Ee near the reversal region. In

fact, edge EFI Iof m=l tearing modes provides the RFP dynamo 24. Typically, all

internal m=l modes with 2R/a <In I< 3R/a are candidate dynamo modes.

Effective feedback must not only maintain negative edge EF of dominant

fluctuations, but should also minimize central EF. Since B¢_0 near r=0, central

EF and plasma current are primarily toroidal. Positive EF near axis suppresses

plasma current _JII = Ell" EF (or, equivalently, requires higher loop voltage,

under a constant-current constraint). Therefore, the an efficient dynamo mode

has low EF in the core in addition to negative EF(m,n) in the outer region.

The most effective feedback schemes target the subset of candidate dynamo

modes which provides the greatest contribution to both dynamo and loop

voltage VL. Feedback decreases the amplitude of targeted modes below their

resistive-shell levels and shifts magnetic energy into m-1 modes with nearby

resonant surfaces rs (defined where q(rs)=m/n), therefore also nearby in mode-

number-space. As dominant modes are stabilized, they lose their dynamo

character. As neighboring modes grow, they assume dynamo form. These

newly-dominant fluctuations provide the RFP dynamo, whereas reversal is 10st

in the absence of feedback. The fluctuation-driven parallel electric fields of the

new dynamo modes approach conducting-shell EF profiles, sustaining reversal

with low loop voltage.



4.2 Single-mod e feedback

We performed nonlinear calculations for a R/a=2.5 RFP with S=6000 and

0=1.59. When the conducting shell at r=a is replaced with a resistive shell, loop

voltage rises (Fig.la)and reversal is lost on the order of a shell time (Fig.lb)

Numerical tests were performed for two cases to test the feasibility of edge

feedback on one internal tearing mode, Br(a)=0 was imposed on the (m=l,n=-5)

mode in oI.e case and on the (1,-7) mode in another case. These are originally
i

the dominant dynamo modes, typically resonating around r=.4a and r=.6a,

respectively. Feedback on either dynamo mode sustains reversal and lowers

loop voltage (Fig.l).

Improvement in plasma parameters of resistive-shell RFPs with feedback

isdue not simply to reductions in fluctuation levels, but to changes in EF

profiles. While feedback on (1,-5) reduces magnetic and velocit 7 fluctuations in
i

the targeted mode, fluctuations rise correspondingly in neighboring modes such

as the (1,-7); similarly, (1,-7) feedback reduces (l,-7) fluctuations while (1,-5)

fluctuations rise. While the overall fluctuation levels may !ncrease or decrease

with feedback, the relative phasing and spatial distribution of individual

fluctuations can change such that volume-averaged EF decreases, lowering VL

and sustaining reversal.

For example, without feedback (Fig.2a), EF at the edge is insufficient to

sustain reversal. Correspondingly, VL quadruples in a shell time. With (1,-5)

feedback, not only is reversal sustained, but loop voltage drops to within 30% of

the conducting shell level as EF drops throughout the plasma (Fig.2b). We find

that feedback control of (1,-7) is not as effective in reducing VL, pointing to a

significant sensitivity to choice of target mode. Based on these single-mode

feedback results, we attempt to more closely approach the conducting shell case
-

m
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by applying feedback to several modes simultaneously.

i ,

4.3 Multi-mode feedback

4.3.1 Multi-mode feedback at small aspect-ratio

With either a conducting or resistive shell, tearing modes with m=l and

I n1=4-8 dominate energy spectra in an RFP with aspect ratio R/a=2.5. The
I

dominant m=l modes tend to be separated by An=2, as the (0,2) mode is the

largest axially symmetric fluctuation. Depending on the random amplitudes of

initialized perturbations, we have found quasi-steady states where either (1,-5)

and (1,-7) or (1,-4) and (1,-6) dominate the mode spectrum for several shell times.

(Global plasma parameters such as mean field levels and profiles are generally

independent of initalization.) These internally resonant helical fluctuations

g_w on the order of the resistive shell time in the absence of feedback. Loop

voltage grows on a faster timescale in order to hold the plasma current constant.

- Most of the results presented here are from the initialization dominated by (1,-5)

and (1,-7) fluctuations; results are comparable for the initialization dominated by

, (1,-4) and (1,-6) fl:uctuations.

Since the few m=l modes with Inl between 2R/a and 3R/a typically

account for almost 90% of the fluctuation magnetic energy, we ran numerical

tests of feedback on different combinations of these modes. Multi-mode feedback

is applied to two and four modes in several combinations.

Feedback is applied to two modes simultaneously in four different cases'

to (1,-5) and (1,-7); to (1,-4) and (1,-6); to (1,-5) and (1,-6). In a fourth test, feedback

is applied to (1,-5) and (1,-7) until (1,-4) and (1,-6) become dominant, after which
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time feedback is.applied to (1,-4) and (1,-6). The (1,-5) tends to provide the bulk of

the dynamo EF in the absence of feedback. Stabilization of (1,-5) is common to

the most effective feedback schemes: this channeis energy into the (1,-4) _ind (1,-
i

6) modes, which sustain dynamo with lower EF. Feedback on (1,-4) or (1,-6), on

the other hand, forces m0re energy into the original dynamo modes, (1,-5) and

(1,-7), increasing fluctuations and Vu

We also apply feedback to ali four candidate dynamo modes

simultaneously (ro=l, In1=4-7). In this case, energy does not flow into modes

outside the candidate dynamo range, but peaks in (1,-5) again. Results are

summarized in Fig. 3, which shows the approach of plasma loop voltage to the

level in a conducting shell as feedback is applied to different modes. In ali

schemes which target (1,-5), growth rates approach zero for all modes as the

feedback-stabilized RFP approaches steady state.

In the remainder of this section, we examine a limited set of runs in more

detail to discern the mechanisms responsible for effective feedback. We focus on

the simultaneous feedback of (1,-5) and (1,-7) modes in a resistive shell, and

compare this case to the resistive shell without feedback (worst case) and to the

conducting shell (best case), which effectively applies feedback to all fluctuations.

Fig.4 shows magnetic energy spectra for the three cases after evolution for

one shell time. In the conducting-shell case, (1,-5) and (1,-7) are the dominant
z

fluctuations. With a resistive shell, all modes grow approximately an order of

magnitude in one shell time; (1,-5) remains dominant and (1,-6) has grown

nearly as large as (1,-7) (Fig.4a) When feedback is applied to the two dominant

modes simultaneously, the (1,-5) and (1,-7) amplitudes drop below conducting-

shell levels. Ali other modes grow beyond conducting-shell levels, and the

neighboring modes (1,-4) and (1,-6) become dominant, as seen in Fig 4b. Reversal
_

is maintained past three shell times, when we choose to terminate the run.
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(High velocity fluctuations in the case without feedback make the time step size

too small to justify continuing our tests beyondthis point.)

Modal EF(m,n) profiles change reprodv.cibly when feedback is apl_lied to

"_dominant modes: these lose their dynamo character and the newly-

dominant m=l modes spontaneously alter to provide the dynamo instead. In

• the conducting-shell case, (1,-5) and (1,-7) drive dynamo with negative EL:in the

reversal region. When feedback is applied to these modes they lose their

dynamo character,c_ntr;buting negligible EF in the reversal region (Fig.5). The

(1,-6) and (1.,-4)were small and non-dynamo with a conducting shell. But in the

feedback case, these neighboring modes adjust to provide negativ,e EF in the

reversal region (Fig.6, curve b), taking on the dynamo role. (This process is

representative of all feedback cases examined. For example, ii'. the initialization

which yields dominant (1,-4) and (1,-6) in steady state, feedback on these modes

causes them to lose their dynamo character, while neighboring (1,-5;) and (1,-7)

grow to provide the dynamo.) As in single-mode feedback, reduced EF keeps Ell

- and VL low for a given plasma current._

Since central EF drops, the newly-dominant m=l modes sustain the RFP

more efficiently than the original, feedback-stabilized dynamo modes. The
_

efficiency of the new dynamo modes can be quantified in terms of the ratio of

dynamo-driving poloidal EF near the RFP edge to current-suppressing toroidal
_

--- EF near the core. We define 13 =<EFG>edge / <EFz>core, where < >edge is a

volume average from rm to r=a and <EFz>core is a volume average from r=0 to_

rra, where the poloidal and toroidal fields have the same magnitude at rra. For
--

z ,,

example, the (1,-6) dynamo mode in the feedback case yields 13= 21%. Without

feedback the same dynamo mode has only 13= 11%, and significantly higher VL is

required to maintain the plasma current.
-- _

_lj A scenario for the mechanism of feedback stabilization emerges from our
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investigations. When Br(ro,n) Ia = 0 is applied to a dominant m=l tearing mode

resonant near axis, the mode's global B(r) and v(r) amplitudes decrease. As EF

drops on axis, central J can grow. This decreases the axial safety factor, shifting rs

inward for axially resonant modes. Deeper resonant surfaces result in relatively

larger dynamo-driving regions of negative (EF)0 outside each rs(ro,n). The net

effect, as demonstrated above, is more RFP dynamo and less loop voltage.

Decomposition of (EF)0 _-<vxb>0 = vrbz- vzbr for many feedback cases

consistently shows that in resistive-shell RFPs the vrbz term drives most of the

negal:ive me_,n E0, or dynamo, at the plasma edge in resistive-shell RFPs (Fig.7a).

' 1
In conducting-shell RFPs, it is vzbr which accounts for dynamo drive, since Vr is

smaller throughout the reversal region than br. Similarly, examination of (EF)z =

v0br-vrb0 reveals that both terms contribute nearly equally to loop voltage

(Fig.7b) in all cases. Experimental measurements of these terms are planned :_s.

4.3.2 Multi-mode feedback at large aspect-ratio (R/a=6.G

The number of dominant modes is about 2R/a. Hence, feedback can be

more difficult at large aspect-ratio. The dominant fluctuations have higher n-

number and are more closely spaced than in the small aspect-ratio cases

considered above, since the safety factor on axis decreases as R/a increases, as

- seen in Fig.8. Tearing modes are more strongly coupled to each other; mode

amplitudes and growth rates are also greater at large aspect ratio. In the absence

- of feedback, magnetic energy fluctuations grow and the loop voltage increases a

factor of 4 in one shell time, as seen in Fig.9.

Ali internal m=l modes in the range (1,-11) to (1,-18) contribute readily to

the dynamo when R/a=6.0. If feedback is applied to any one of these candidate

m
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dynamo modes, energy in that mode simply shifts into near neighbors.

However, unlike the small-aspect ratio case, such a shift in the energy spectrum

does not tend to lower the loop voltage. Feedback on (1,-13) alone, whicl_ tends

to be slightly larger than the other dynamo modes, is insufficient to improve the

efficiency of nedghboring dynamo modes. Several m=l modes must be stabilized

simultaneously; significant loop voltage reduction is evident when the number

of :nodes stabil:zed approaches the aspect ratio (Fig.9).

As an auxilliary method, we investigate feedback not just on ro=l, but also

on modeswhich play a ro!.e in m=l coupling. Since m=l modes couple to each

other quasilinearly through m=0 modes as well as nonlinearly, m=0 feedback is

added. If feedback of m=0 modes also reduced ampl:tudes of m=l modes to

which they couple, then feedback on only a few m=l modes may suffice with

simultaneous feedback on m=0. Combining m=l feedback with (0,2) feedback is

observed to reduce plasma VL and feedback coil currents only to a moderate

extent. Feedback oi: a wide range of candidate dynamo modes more closely

approaches the conducting shell case.

Currents required by feedback coils (JFB)remain relatively low, regardless

of aspect ratio. At most, (JFB)tot/Jplasma-Z8.5% is required to decrease loop voltage

by 60% when five dynamo modes are simultaneously stabilized. These results

suggest that if space constraints are not severe, coils resonant with m=l, 2R/a < n

< 3R/a should be wou_'d for possible use in feedback stabilization. Addition of a

-_ (0,2) winding provides moderate feedback system flexibility.

_

4.4 Comparisons with experiment

=

4.4.1 Experimental observations--
_



The HBTX1C RFP (R/a=3.0) experiment experienced higher fluctuation

levels and truncated plasma discharge times when its conducting w_ill was

replaced with a resistive shell. 2 Reversal loss was attributed to growing resistive

shell modes. The resistive internal (1,-5) and ideal external (1,2) modes were

observed to grow at similar rates at 0=1.6, contrary to predictions of linear

theory 26, suggesting close nonlinear coupling between the modes. The internal

mode resona!:es near the plasma axis, but the external mode is nonresonant.

This suggested that feedback coils at the wall (r=l.la) might more effectively

suppress the free boundary (1,2) mode. It was hoped that suppression of (1,2)

would couple to suppress (1,- 5) also, thereby sustaining the RFP. Feedback coils

were wound outside a secondary shell at 1.1a with a 5.5 ms vertical field soak-in

time. Reversal persisted up to two shell times with application of (1,2) feedback,

but loop voltage and fluctuation levels remained high 10 .

4.4.2 MHD computations

Our low-aspect ratio calculations -/model an RFP similar in size to HBTX.

It should bc noted that the high resistivity (low S) in our calculations, relative to

experiment, yields smaller external kinks, such as the (1,2) mode. 15

We modeled an idealization of the experimental feedback (which reduced

Br at r=l.la with a finite time lag) with calculations that nulled Br at r=a at all

times. Our computations show that edge feedback on the (1,2) mode, resonant

near the plasma edge, is less effective than edge feedback on a tearing mode
-

. resonant near axis. As seen in Fig.l, the resistive shell RFP loses reversal on the

order of a shell time. Feedback on the external (1,2) mode makes edge EF



, 15

sufficiently negative to sustain reversal (Fig.10), but fluctuation levels and VL

remain high, as in HBTX1C. While reversal lost with a resistive shell is restored

with feedback on either the (1,2) or (1,-5) mode (section 4.2), only the laffer also

reduces VL (Fig.li). This is because axial EF remains high with (1,2) feedback

(Fig.10), while (1,-5) feedback leads to reduced EF throughout the plasma (Fig.2).

The similarity of experimental and numerical results suggests that even

ideal feedback applied to external modes such as (1,2) is of limited use on an RFP.

It is more effective to target the m=l dynamo modes directly, instead of relying

on coupling with externally resonant modes targeted for feedback. This is

consistent with observations that axially resonant m=l tearing modes drive RFP

dynamics, through quasilinear modifications of mean field profiles and through

nonlinear interactions with each other 8,9 . That edge feedback has a strong effect

on dynamo modes even though they are resonant deep wifi6n the plasma need

not be surprising in light of calculations 22 which found internal m=l modes'

dependence on boundary conditions to be highly nonlinear.

5. SUMMARY
=

The growth of tearing modes in resistive shell RFPs poses problems for potential

RFP reactors. A simple feedback scheme has been developed to stabilize resistive

shell fluctuations without suppressing the RFP dynamo. Investigation by

nonlinear MHD computations on RFPs of large and small aspect ratio reveal that

feedback on a small number (~R/a) of m=l modes restores RFP reversal and

lowers loop voltage. Edge feedback on axially resonant m=l dynamo modes

= proves more effective than edge feedback on free-boundary or on edge-resonant

modes which couple to m=l. A physical mechaxlism for feedback stabilization is
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proposed. Feedback tests also reveal optimal <_x_> profiles for dynamo efficiency

and show that vrbz provides the bulk of the resistive-shell RFP dynamo. Results

agree with a limited experimental test of feedback on an external mode. Feedback

stabilization of dominant internally resonant tearing modes is predicted to extend

plasma lifetimes and reduce required loop voltage. This has yet to be tested

experimentally.

This work was supported by the U.S. Department of Energy.
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Fig.l' a) Loop voltage VLversus time for three R/a=2.5 cases: i) resistive shell
without feedback; ii) resistive shell with feedback on the (ro=l, n=-7) mode; iii)

resistive shell with feedback on (1,-5) mode; iv) close-fitting conducting shell, b)

Reversal parameter F=Bz(a)/<Bz> versus time for i) resistive shell without

feedback and iii) resistive shell with feedback on (1,-5) mode. F fluctuates about a

mean value of -.20 in the steady state case with feedback.
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Fig.2 Radial profiles of total parallel electric field E I=EF + _lJ I, EF, and rlJ

where the parallel fluctuation-induced electric field EF = -S<vxb>.B/LBl' a)-

without feedback and b) with (1,-5) feedback
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Fig.3: Loop voltage (normalized to conducting shell VL ) for different feedback

cases (R/a.,-2.5): R: resistive shell without feedback; (1,2)' resistive shell with_

(1,2) feedback; 4&6: resistive shell with (1,-4)&(1,-6) feedback; (1,-7)' resistive

shell with (1,-7) feedback; 5&6' resistive shell with (1,-5)&(1,-6) feedback; (1,-5}:

resistive shell with (1,-5) feedback; 5&7' resistive shell with (1,-5)&(1,.-7)

feedback; 57/46' resistive shell with (1,-5)&(1,-7) then (1,-4)&(1,-6) feedback; 4-7:

resistive shell with (1,-4)&(1,-5)&(1,-6)&(1,-7) feedback; C: conducting shell
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Fig.4: Spectra of m=l magnetic energy fluctuations (volume-averaged) versus
toroidal mode number n: a) resistive shell without feedback b) resistive shell

with (1,-5) and (1,-7) feedback c) conducting shell
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Figs.5: Profiles Hf modal (1,-5) fluctuation-induced electric field EF -<vxb>.B/lBl

, for a) resistive shell without feedback; b) resistive shell with(I,-5)&(1,-7)

feedback; c) conducting shell. Long vertical line is the resonant surface rs

without feedback; short vertical line is rs for cases (b) and (c).

Fig,6: Profiles of modal (1,-6) fluctuation-induced electric field EF =<vxb>,B/lBl

for a) resistive shell without feedback; b) (1,-5) and (1,-7) feedback; c) conducting

shell EF oscillates about Zero at too low a level to distinguish, oi: this scale, Long

vertical line is the resonant surface rs without feedback; short vertical line is rs

for cases (b) and (c),
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Fig.9: Loop voltage (normalized to conducting shell case for different R/a=6.0

feedback cases: R' resistive shell; 12: resistive shell with (1,.-12) feedback; 1:

resistive shell with (0,1) feedback; 13': resistive shell with (0,1)&(1,-13) feedback;

13: resistive shell with (1,-13) feedback; 2: resistive shell with (0,2) feedback; iii:

; resistive shell with (1,-li)&(1,-13)&(1,-15) feedback; 15: resistive shell with (1,-15)

._ feedback; ii: resistive shell with (1,-11)&(1,-15) feedback; 13": r,esistive shell with

(1,-13)&(0,2) feedback; v: resistive shell with (1,-II)&(1,-12)&(1,-13)&(1,-14)&
J

(1,-15) feedback
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total parallel electric field E II=EF + rlJ i, EF, and T1JII where parallel fluctuation-
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versus time
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