72 research outputs found

    Angle-Encoded Swarm Optimization for UAV Formation Path Planning

    Full text link
    © 2018 IEEE. This paper presents a novel and feasible path planning technique for a group of unmanned aerial vehicles (DAVs) conducting surface inspection of infrastructure. The ultimate goal is to minimise the travel distance of DAVs while simultaneously avoid obstacles, and maintain altitude constraints as well as the shape of the UAV formation. A multiple-objective optimisation algorithm, called the Angle-encoded Particle Swarm Optimization (θ- PSO) algorithm, is proposed to accelerate the swarm convergence with angular velocity and position being used for the location of particles. The whole formation is modelled as a virtual rigid body and controlled to maintain a desired geometric shape among the paths created while the centroid of the group follows a pre-determined trajectory. Based on the testbed of 3DR Solo drones equipped with a proprietary Mission Planner, and the Internet-of- Things (loT) for multi-directional transmission and reception of data between the DAV s, extensive experiments have been conducted for triangular formation maintenance along a monorail bridge. The results obtained confirm the feasibility and effectiveness of the proposed approach

    Enhanced discrete particle swarm optimization path planning for UAV vision-based surface inspection

    Full text link
    © 2017 In built infrastructure monitoring, an efficient path planning algorithm is essential for robotic inspection of large surfaces using computer vision. In this work, we first formulate the inspection path planning problem as an extended travelling salesman problem (TSP) in which both the coverage and obstacle avoidance were taken into account. An enhanced discrete particle swarm optimization (DPSO) algorithm is then proposed to solve the TSP, with performance improvement by using deterministic initialization, random mutation, and edge exchange. Finally, we take advantage of parallel computing to implement the DPSO in a GPU-based framework so that the computation time can be significantly reduced while keeping the hardware requirement unchanged. To show the effectiveness of the proposed algorithm, experimental results are included for datasets obtained from UAV inspection of an office building and a bridge

    Eco-innovation and Corporate Cost of Debt: A Cross-Country Evidence

    Get PDF
    This study offers cross-country (G7) evidence that eco-innovation (or green innovation, measured by its Refinitive score and a comprehensive index) is negatively and significantly associated with the corporate cost of debt. The results are intensified for firms with more prolonged eco-innovation engagement, as reflected by the eco-innovation years. The study also uncovers that a greater eco-innovation degree facilitates firms to reduce their carbon risk, affecting creditors\u27 lending decisions by lowering debt costs. Furthermore, the lower borrowing cost underneath higher eco-innovation are more likely to be acquired in financially undistressed and constrained businesses. Our extended analysis further shows that climate governance quality reduces the beneficial impact of eco-innovation on the firm\u27s cost of debt. The research offers timely policy implications on eco-innovation, which constitutes an essential consideration in creditors\u27 lending decisions, aligning with the neo-institutional theory in response to increasing global environmentrelated pressures

    Crack detection using enhanced thresholding on UAV based collected images

    Full text link
    © 2018 Australasian Robotics and Automation Association. All rights reserved. This paper proposes a thresholding approach for crack detection in an unmanned aerial vehicle (UAV) based infrastructure inspection system. The proposed algorithm performs recursively on the intensity histogram of UAV-taken images to exploit their crack-pixels appearing at the low intensity interval. A quantified criterion of interclass contrast is proposed and employed as an object cost and stop condition for the recursive process. Experiments on different datasets show that our algorithm outperforms different segmentation approaches to accurately extract crack features of some commercial buildings

    Automatic interpretation of unordered point cloud data for UAV navigation in construction

    Full text link
    © 2016 IEEE. The objective of this work is to develop a data processing system that can automatically generate waypoints for navigation of an unmanned aerial vehicle (UAV) to inspect surfaces of structures like buildings and bridges. The input includes data recorded by two 2D laser scanners, orthogonally mounted on the UAV, and an inertial measurement unit (IMU). To achieve the goal, algorithms are developed to process the data collected. They are separated into three major groups: (i) the data registration and filtering to generate a 3D model of the structure and control the density of point clouds for data completeness enhancement; (ii) the surface and obstacle detection to assist the UAV in monitoring tasks; and (iii) the waypoint generation to set the flight path. Experiments on different data sets show that the developed system is able to reconstruct a 3D point cloud of the structure, extract its surfaces and objects, and generate waypoints for the UAV to accomplish inspection tasks

    Randomized controlled trial of artesunate or artemether in Vietnamese adults with severe falciparum malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both artemether and artesunate have been shown to be superior to quinine for the treatment of severe falciparum malaria in Southeast Asian adults, although the magnitude of the superiority has been greater for artesunate than artemether. These two artemisinin derivatives had not been compared in a randomized trial.</p> <p>Methods</p> <p>A randomized double blind trial in 370 adults with severe falciparum malaria; 186 received intramuscular artesunate (2.4 mg/kg immediately followed by 1.2 mg/kg at 12 hours then 24 hours then daily) and 184 received intramuscular artemether (3.6 mg per kilogram immediately followed by 1.8 mg per kilogram daily) was conducted in Viet Nam. Both drugs were given for a minimum of 72 hours.</p> <p>Results</p> <p>There were 13 deaths in the artesunate group (7 percent) and 24 in the artemether group (13 percent); P = 0.052; relative risk of death in the patients given artesunate, 0.54; (95 percent confidence interval 0.28-1.02). Parasitaemia declined more rapidly in the artesunate group. Both drugs were very well tolerated.</p> <p>Conclusions</p> <p>Intramuscular artesunate may be superior to intramuscular artemether for the treatment of severe malaria in adults.</p

    Stag hunt game-based approach for cooperative UAVs

    Full text link
    Unmanned aerial vehicles (UAVs) are being employed in many areas such as photography, emergency, entertainment, defence, agriculture, forestry, mining and construction. Over the last decade, UAV technology hasfound applicationsin numerous construction project phases, ranging from site mapping, progress monitoring, building inspection, damage assessments, and material delivery. While extensive studies have been conducted on the advantages of UAVs for various construction-related processes, studies on UAV collaboration to improve the task capacity and efficiency are still scarce. This paper proposes a new cooperative path planning algorithm for multiple UAVs based on the stag hunt game and particle swarm optimization (PSO). First, a cost function for each UAV is defined, incorporating multiple objectives and constraints. The UAV game framework is then developed to formulate the multi-UAV path planning into the problem of finding payoff-dominant e quilibrium. Next, a PSO-based algorithm is proposed to obtain optimal paths for the UAVs. Simulation results for a large construction site inspected by three UAVs indicate the effectiveness of the proposed algorithm in generating feasible and efficient flight paths for UAV formation during the inspection task

    A Multicentre Molecular Analysis of Hepatitis B and Blood-Borne Virus Coinfections in Viet Nam

    Get PDF
    Hepatitis B (HBV) infection is endemic in Viet Nam, with up to 8.4 million individuals estimated to be chronically infected. We describe results of a large, multicentre seroepidemiological and molecular study of the prevalence of HBV infection and blood-borne viral coinfections in Viet Nam. Individuals with varying risk factors for infection (n = 8654) were recruited from five centres; Ha Noi, Hai Phong, Da Nang, Khanh Hoa and Can Tho. A mean prevalence rate of 10.7% was observed and levels of HBsAg were significantly higher in injecting drug users (IDUs) (17.4%, n = 174/1000) and dialysis patients (14.3%, n = 82/575) than in lower-risk groups (9.4%; p<0.001). Coinfection with HIV was seen in 28% of HBV-infected IDUs (n = 49/174) and 15.2% of commercial sex workers (CSWs; n = 15/99). HCV infection was present in 89.8% of the HBV-HIV coinfected IDUs (n = 44/49) and 40% of HBV-HIV coinfected CSWs (n = 16/40). Anti-HDV was detected in 10.7% (n = 34/318) of HBsAg positive individuals. Phylogenetic analysis of HBV S gene (n = 187) showed a predominance of genotype B4 (82.6%); genotypes C1 (14.6%), B2 (2.7%) and C5 (0.5%) were also identified. The precore mutation G1896A was identified in 35% of all specimens, and was more frequently observed in genotype B (41%) than genotype C (3%; p<0.0001). In the immunodominant ‘a’ region of the surface gene, point mutations were identified in 31% (n = 58/187) of sequences, and 2.2% (n = 4/187) and 5.3% (n = 10/187) specimens contained the major vaccine escape mutations G145A/R and P120L/Q/S/T, respectively. 368 HBsAg positive individuals were genotyped for the IL28B SNP rs12979860 and no significant association between the IL28B SNP and clearance of HBsAg, HBV viral load or HBeAg was observed. This study confirms the high prevalence of HBV infection in Viet Nam and also highlights the significant levels of blood-borne virus coinfections, which have important implications for hepatitis-related morbidity and development of effective management strategies

    An Overview of Three Promising Mechanical, Optical, and Biochemical Engineering Approaches to Improve Selective Photothermolysis of Refractory Port Wine Stains

    Get PDF
    During the last three decades, several laser systems, ancillary technologies, and treatment modalities have been developed for the treatment of port wine stains (PWSs). However, approximately half of the PWS patient population responds suboptimally to laser treatment. Consequently, novel treatment modalities and therapeutic techniques/strategies are required to improve PWS treatment efficacy. This overview therefore focuses on three distinct experimental approaches for the optimization of PWS laser treatment. The approaches are addressed from the perspective of mechanical engineering (the use of local hypobaric pressure to induce vasodilation in the laser-irradiated dermal microcirculation), optical engineering (laser-speckle imaging of post-treatment flow in laser-treated PWS skin), and biochemical engineering (light- and heat-activatable liposomal drug delivery systems to enhance the extent of post-irradiation vascular occlusion)
    corecore