155 research outputs found

    General one-loop formulas for decay h→Zγh\rightarrow Z\gamma

    Full text link
    Radiative corrections to the h→Zγh\rightarrow Z\gamma are evaluated in the one-loop approximation. The unitary gauge gauge is used. The analytic result is expressed in terms of the Passarino-Veltman functions. The calculations are applicable for the Standard Model as well for a wide class of its gauge extensions. In particular, the decay width of a charged Higgs boson H±→W±γH^\pm \rightarrow W^\pm\gamma can be derived. The consistence of our formulas and several specific earlier results is shown.Comment: 33 pages, 3 figures, a new section (V) and references were improved in the published versio

    One-loop contributions to decays eb→eaγe_b\to e_a \gamma and (g−2)ea(g-2)_{e_a} anomalies, and Ward identity

    Full text link
    In this paper, we will present analytic formulas to express one-loop contributions to lepton flavor violating decays eb→eaγe_b\to e_a \gamma, which are also relevant to the anomalous dipole magnetic moments of charged leptons eae_a. These formulas were computed in the unitary gauge, using the well-known Passarino-Veltman notations. We also show that our results are consistent with those calculated previously in the 't Hooft-Veltman gauge, or in the limit of zero lepton masses. At the one-loop level, we show that the appearance of fermion-scalar-vector type diagrams in the unitary gauge will violate the Ward Identity relating to an external photon. As a result, the validation of the Ward Identity guarantees that the photon always couples with two identical particles in an arbitrary triple coupling vertex containing a photon.Comment: The version accepted to Nuclear Physics

    Transport Jc in Bulk Superconductors: A Practical Approach?

    Get PDF
    The characterisation of the critical current density of bulk high temperature superconductors is typically performed using magnetometry, which involves numerous assumptions including, significantly, that Jc within the sample is uniform. Unfortunately, magnetometry is particularly challenging to apply where a local measurement of Jc across a feature, such as a grain boundary, is desired. Although transport measurements appear to be an attractive alternative to magnetization, it is extremely challenging to reduce the cross-sectional area of a bulk sample sufficiently to achieve a sufficiently low critical current that can be generated by a practical current source. In the work described here, we present a technique that enables transport measurements to be performed on sections of bulk superconductors. Metallographic techniques and resin reinforcement were used to create an I-shaped sample of bulk superconductor from a section of Gd-Ba-Cu-O containing 15 wt % Ag2O. The resulting superconducting track had a cross-sectional area of 0.44 mm2. The sample was found to support a critical current of 110 A using a field criterion in the narrowed track region of 1 μV cm-1. We conclude, therefore, that it is possible to measure critical current densities in excess of 2.5 x 108 A m-2 in sections of a bulk superconductor.This work was supported by the Engineering and Physical Sciences Research Council, via a Doctoral Training Award (grant number is EP/L504920/1) and funding from grant number EP/K02910X/1. This work was also supported by the Boeing Company. All data are provided in full in the results section of this paper.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/TASC.2016.253764
    • …
    corecore