56 research outputs found

    Surface Engineering of Protein Nanoclusters to Overcome Mucus Barriers

    Get PDF
    Intranasal delivery of vaccines is a needle-free route that can induce mucosal antibodies and cellular responses to neutralize pathogens before entering systemic circulation, as well as systemic immunity. However, nasal secretions and mucosa are biological barriers that have been shown to inhibit delivery of antigens and nanoparticles to nasal-associated lymphoid tissue. Coatings and surface modifications on nanoparticles can alter transport and immune responses due to their interaction with biological barriers and cells. Protein nanoclusters (PNC) are one type of vaccine nanoparticle, made from protein antigens, that can be modified to change size, surface charge, and surface chemistry. Specifically, this thesis explores the interactions of mucus and model ovalbumin antigen PNC displaying different surface covalent modifications and non-covalent layer by layer coatings. Transport of the PNC in extracted mucus was characterized using bulk channel diffusion to visualize population distributions and multiple particle tracking for single particle behavior analysis. Lastly, the protein corona of these nanoparticles are identified in nasal fluids to understand their potential in vivo interaction during intranasal delivery. Overall, this thesis demonstrates the impact that surface modifications have on protein nanoparticle vaccines to overcome mucus barriers and, ultimately, improve cellular uptake and immunological processing.M.S

    Chemogenetic stimulation of the hypoglossal neurons improves upper airway patency

    Get PDF
    Obstructive sleep apnea (OSA) is characterized by recurrent upper airway obstruction during sleep. OSA leads to high cardiovascular morbidity and mortality. The pathogenesis of OSA has been linked to a defect in neuromuscular control of the pharynx. There is no effective pharmacotherapy for OSA. The objective of this study was to determine whether upper airway patency can be improved using chemogenetic approach by deploying designer receptors exclusively activated by designer drug (DREADD) in the hypoglossal motorneurons. DREADD (rAAV5-hSyn-hM3(Gq)-mCherry) and control virus (rAAV5-hSyn-EGFP) were stereotactically administered to the hypoglossal nucleus of C57BL/6J mice. In 6–8 weeks genioglossus EMG and dynamic MRI of the upper airway were performed before and after administration of the DREADD ligand clozapine-N-oxide (CNO) or vehicle (saline). In DREADD-treated mice, CNO activated the genioglossus muscle and markedly dilated the pharynx, whereas saline had no effect. Control virus treated mice showed no effect of CNO. Our results suggest that chemogenetic approach can be considered as a treatment option for OSA and other motorneuron disorders

    Multiple Choice Question Corpus Analysis for Distractor Characterization

    Get PDF
    International audienceIn this paper, we present a study of MCQ aiming to define criteria in order to automatically select distractors. We are aiming to show that distractor editing follows rules like syntactic and semantic homogeneity according to associated answer, and the possibility to automatically identify this homogeneity. Manual analysis shows that homogeneity rule is respected to edit distractors and automatic analysis shows the possibility to reproduce these criteria. These ones can be used in future works to automatically select distractors, with the combination of other criteria

    Nanoscale battery cathode materials induce DNA damage in bacteria

    Get PDF
    The increasing use of nanoscale lithium nickel manganese cobalt oxide (LixNiyMnzCo1−y−zO2, NMC) as a cathode material in lithium-ion batteries poses risk to the environment. Learning toxicity mechanisms on molecular levels is critical to promote proactive risk assessment of these complex nanomaterials and inform their sustainable development. We focused on DNA damage as a toxicity mechanism and profiled in depth chemical and biological changes linked to DNA damage in two environmentally relevant bacteria upon nano-NMC exposure. DNA damage occurred in both bacteria, characterized by double-strand breakage and increased levels of many putative chemical modifications on bacterial DNA bases related to direct oxidative stress and lipid peroxidation, measured by cutting-edge DNA adductomic techniques. Chemical probes indicated elevated intracellular reactive oxygen species and transition metal ions, in agreement with DNA adductomics and gene expression analysis. By integrating multi-dimensional datasets from chemical and biological measurements, we present rich mechanistic insights on nano-NMC-induced DNA damage in bacteria, providing targets for biomarkers in the risk assessment of reactive materials that may be extrapolated to other nano–bio interactions

    Epidemiology of invasive cutaneous melanoma

    Get PDF
    Data are presented on the current incidence of melanoma with recent and predicted future trends illustrating a likely continuing increase in incidence. Risk factors for developing melanoma are discussed, including current known melanoma susceptibility genes. Phenotypic markers of high-risk subjects include high counts of benign melanocytic naevi. Other risk factors considered include exposure to natural and artificial ultraviolet radiation, the effect of female sex hormones, socioeconomic status, occupation, exposure to pesticides and ingestion of therapeutic drugs including immunosuppressives and non-steroidal anti-inflammatory drugs. Aids to earlier diagnosis are considered, including public education, screening and use of equipment such as the dermatoscope. Finally, the current pattern of survival and mortality is described

    p16 Mutation Spectrum in the Premalignant Condition Barrett's Esophagus

    Get PDF
    Background: Mutation, promoter hypermethylation and loss of heterozygosity involving the tumor suppressor gene p16 (CDKN2a/INK4a) have been detected in a wide variety of human cancers, but much less is known concerning the frequency and spectrum of p16 mutations in premalignant conditions. Methods and Findings: We have determined the p16 mutation spectrum for a cohort of 304 patients with Barrett’s esophagus, a premalignant condition that predisposes to the development of esophageal adenocarcinoma. Forty seven mutations were detected by sequencing of p16 exon 2 in 44 BE patients (14.5%) with a mutation spectrum consistent with that caused by oxidative damage and chronic inflammation. The percentage of patients with p16 mutations increased with increasing histologic grade. In addition, samples from 3 out of 19 patients (15.8%) who underwent esophagectomy were found to have mutations. Conclusions: The results of this study suggest the environment of the esophagus in BE patients can both generate an

    Extra-Intestinal Manifestations of Familial Adenomatous Polyposis

    Get PDF
    Familial adenomatous polyposis (FAP) is an autosomal dominantly inherited disorder, which results from a germ line mutation in the APC (adenomatous polyposis coli) gene. FAP is characterized by the formation of hundreds to thousands of colorectal adenomatous polyps. Although the development of colorectal cancer stands out as the most prevalent complication, FAP is a multisystem disorder of growth. This means, it is comparable to other diseases such as the MEN syndromes, Von Hippel-Lindau disease and neurofibromatosis. However, the incidence of many of its clinical features is much lower. Therefore, a specialized multidisciplinary approach to optimize health care—common for other disorders—is not usually taken for FAP patients. Thus, clinicians that care for and counsel members of high-risk families should have familiarity with all the extra-intestinal manifestations of this syndrome. FAP-related complications, for which medical attention is essential, are not rare and their estimated lifetime risk presumably exceeds 30%. Affected individuals can develop thyroid and pancreatic cancer, hepatoblastomas, CNS tumors (especially medulloblastomas), and various benign tumors such as adrenal adenomas, osteomas, desmoid tumors and dental abnormalities. Due to improved longevity, as a result of better prevention of colorectal cancer, the risk of these clinical problems will further increase

    Using research to prepare for outbreaks of severe acute respiratory infection

    Get PDF
    corecore