1,570 research outputs found

    Lunar science prior to Apollo 11

    Get PDF
    Evolutional aspects and geological interpretations in lunar scienc

    Quantitative estimation of plant characteristics using spectral measurement: A survey of the literature

    Get PDF
    There are no author-identified significant results in this report

    Timing the millisecond pulsars in 47 Tucanae

    Get PDF
    In the last 10 years 20 millisecond pulsars have been discovered in the globular cluster 47 Tucanae. Hitherto, only 3 of these had published timing solutions. Here we improve upon these 3 and present 12 new solutions. These measurements can be used to determine a variety of physical properties of the pulsars and of the cluster. The 15 pulsars have positions determined with typical uncertianties of only a few milliarcsec and they are all located within 1.2 arcmin of the cluster centre. We have also measured the proper motions of 5 of the pulsars, which are consistent with the proper motion of 47 Tuc based on Hipparcos data. The period derivatives measured for many of the pulsars are dominated by the dynamical effects of the cluster gravitational field, and are used to constrain the surface mass density of the cluster. All pulsars have characteristic ages T > 170 Myr and magnetic fields B < 2.4e9 Gauss, and the average T > 1 Gyr. We have measured the rate of advance of periastron for the binary pulsar J0024-7204H, implying a total system mass 1.4+-0.8 solar masses.Comment: 17 pages, 11 included figures, accepted for publication in MNRA

    Expected characteristics of the subclass of Supernova Gamma-ray Bursts (S-GRBs)

    Get PDF
    The spatial and temporal coincidence between the gamma-ray burst (GRB) 980425 and supernova (SN) 1998bw has prompted speculation that there exists a class of GRBs produced by SNe (``S-GRBs''). Robust arguments for the existence of a relativistic shock have been presented on the basis of radio observations. A physical model based on the radio observations lead us to propose the following characteristics of supernovae GRBs (S-GRBs): 1) prompt radio emission and implied brightness temperature near or below the inverse Compton limit, 2) high expansion velocity of the optical photosphere as derived from lines widths and energy release larger than usual, 3) no long-lived X-ray afterglow, and 4) a single pulse (SP) GRB profile. Radio studies of previous SNe show that only type Ib and Ic potentially satisfy the first condition. Accordingly we have investigated proposed associations of GRBs and SNe finding no convincing evidence (mainly to paucity of data) to confirm any single connection of a SN with a GRB. If there is a more constraining physical basis for the burst time-history of S-GRBs beyond that of the SP requirement, we suggest the 1% of light curves in the BATSE catalogue similar to that of GRB 980425 may constitute the subclass. Future optical follow-up of bursts with similar profiles should confirm if such GRBs originate from some fraction of SN type Ib/Ic.Comment: 11 pages of LaTeX with 1 figure. Submitted to the Astrophysical Journal Letter

    Relativistic Winds from Compact Gamma-Ray Sources: II. Pair Loading and Radiative Acceleration in Gamma-ray Bursts

    Get PDF
    We consider the effects of rapid pair creation by an intense pulse of gamma-rays propagating ahead of a relativistic shock. Side-scattered photons colliding with the main gamma-ray beam amplify the density of scattering charges. The acceleration rate of the pair-loaded medium is calculated, and its limiting bulk Lorentz factor related to the spectrum and compactness of the photon source. One obtains, as a result, a definite prediction for the relative inertia in baryons and pairs. The deceleration of a relativistic shock in the moving medium, and the resulting synchrotron emissivity, are compared with existing calculations for a static medium. The radiative efficiency is increased dramatically by pair loading. When the initial ambient density exceeds a critical value, the scattering depth traversed by the main gamma-ray pulse rises above unity, and the pulse is broadened. These considerations place significant constraints on burst progenitors: a pre-burst mass loss rate exceeding 10^{-5} M_\odot per year is difficult to reconcile with individual pulses narrower than 10 s, unless the radiative efficiency is low. An anisotropic gamma-ray flux (on an angular scale \Gamma^{-1} or larger) drives a large velocity shear that greatly increases the energy in the seed magnetic field forward of the propagating shock.Comment: 19 pp., LaTeX (aaspp4.sty), revised 12/23/99, Ap. J. in press; summary section added and several minor improvements in presentatio

    Polarization change due to fast winds from accretion disks

    Get PDF
    A fraction of the radiation produced by an accretion disk may be Thomson scattered by a wind flowing away from the disk. Employing a simple plane-parallel model of the wind, we calculate the polarization of the scattered radiation and find that its sign depends on the wind velocity, beta=v/c. In the case, 0.12 < beta < 0.78, the polarization is parallel to the disk normal, i.e., it is orthogonal to the standard Chandrasekhar's polarization expected from accretion disks. The velocity of an electron-positron wind is likely to saturate near the equilibrium value beta_* of order 0.5 for which the accelerating radiation pressure is balanced by the Compton drag. Then the change of polarization by the wind is most pronounced. This may help to reconcile the standard accretion disk model with the optical polarimetric observations of non-blazar AGNs.Comment: accepted for publication in ApJ Letter

    Jet Acceleration by Tangled Magnetic Fields

    Get PDF
    We explore the possibility that extragalactic radio jets might be accelerated by highly disorganized magnetic fields that are strong enough to dominate the dynamics until the terminal Lorentz factor is reached. Following the twin-exhaust model by Blandford & Rees (1974), the collimation under this scenario is provided by the stratified thermal pressure from an external medium. The acceleration efficiency then depends on the pressure gradient of that medium. In order for this mechanism to work there must be continuous tangling of the magnetic field, changing the magnetic equation of state away from pure flux freezing (otherwise conversion of Poynting flux to kinetic energy flux is suppressed). This is a complementary approach to models in which the plasma is accelerated by large scale ordered fields. We include a simple prescription for magnetic dissipation, which leads to tradeoffs among conversion of magnetic energy into bulk kinetic energy, random particle energy, and radiation. We present analytic dynamical solutions of such jets, assess the effects of radiation drag, and comment on observational issues, such as the predicted polarization and synchrotron brightness. Finally, we try to make the connection to observed radio galaxies and gamma-ray bursts.Comment: 15 pages, 10 figures, accepted for publication in Ap

    Biases in the polarization position angles in the NVSS point source catalogue

    Full text link
    We have examined the statistics of the polarization position angles determined for point sources in the NRAO-VLA sky survey (NVSS) and find that there is a statistically significant bias toward angles which are multiples of 45 degrees. The formal probability that the polarization angles are drawn from a uniform distribution is exponentially small. When the sample of those NVSS sources with polarizations detected with a signal to noise \geq3 is split either around the median polarized flux density or the median fractional polarization, the effect appears to be stronger for the more highly polarized sources. Regions containing strong sources and regions at low galactic latitudes are not responsible for the non-uniform distribution of position angles. We identify CLEAN bias as the probable cause of the dominant effect, coupled with small multiplicative and additive offsets on each of the Stokes parameters. Our findings have implications for the extraction of science, such as information concerning galactic magnetic fields, from large scale polarization surveys
    corecore