1,361 research outputs found
Controlling terminology for translation
Meeting: International Technical Communications Conference, 38th, 1991, New York, N.Y., U
Tracking a northern fulmar from a Scottish nesting site to the Charlie-Gibbs Fracture Zone : Evidence of linkage between coastal breeding seabirds and Mid-Atlantic Ridge feeding sites
Peer reviewedPublisher PD
Rings and rigidity transitions in network glasses
Three elastic phases of covalent networks, (I) floppy, (II) isostatically
rigid and (III) stressed-rigid have now been identified in glasses at specific
degrees of cross-linking (or chemical composition) both in theory and
experiments. Here we use size-increasing cluster combinatorics and constraint
counting algorithms to study analytically possible consequences of
self-organization. In the presence of small rings that can be locally I, II or
III, we obtain two transitions instead of the previously reported single
percolative transition at the mean coordination number , one from a
floppy to an isostatic rigid phase, and a second one from an isostatic to a
stressed rigid phase. The width of the intermediate phase and the
order of the phase transitions depend on the nature of medium range order
(relative ring fractions). We compare the results to the Group IV
chalcogenides, such as Ge-Se and Si-Se, for which evidence of an intermediate
phase has been obtained, and for which estimates of ring fractions can be made
from structures of high T crystalline phases.Comment: 29 pages, revtex, 7 eps figure
Ongoing Phase 1/2 Study Of Incb050465, A Selective Pi3kÎŽ Inhibitor, For The Treatment Of Patients (Pts) With Relapsed/Refractory (R/R) BâCell Malignancies (Citadelâ101)
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137307/1/hon2438_139.pd
Structure of the icosahedral Ti-Zr-Ni quasicrystal
The atomic structure of the icosahedral Ti-Zr-Ni quasicrystal is determined
by invoking similarities to periodic crystalline phases, diffraction data and
the results from ab initio calculations. The structure is modeled by
decorations of the canonical cell tiling geometry. The initial decoration model
is based on the structure of the Frank-Kasper phase W-TiZrNi, the 1/1
approximant structure of the quasicrystal. The decoration model is optimized
using a new method of structural analysis combining a least-squares refinement
of diffraction data with results from ab initio calculations. The resulting
structural model of icosahedral Ti-Zr-Ni is interpreted as a simple decoration
rule and structural details are discussed.Comment: 12 pages, 8 figure
A developmental analysis of communication between mothers and infants with Down's syndrome
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68850/2/10.1177_027112148300300110.pd
Generation of atom-photon entangled states in atomic Bose-Einstein condensate via electromagnetically induced transparency
In this paper, we present a method to generate continuous-variable-type
entangled states between photons and atoms in atomic Bose-Einstein condensate
(BEC). The proposed method involves an atomic BEC with three internal states, a
weak quantized probe laser and a strong classical coupling laser, which form a
three-level Lambda-shaped BEC system. We consider a situation where the BEC is
in electromagnetically induced transparency (EIT) with the coupling laser being
much stronger than the probe laser. In this case, the upper and intermediate
levels are unpopulated, so that their adiabatic elimination enables an
effective two-mode model involving only the atomic field at the lowest internal
level and the quantized probe laser field. Atom-photon quantum entanglement is
created through laser-atom and inter-atomic interactions, and two-photon
detuning. We show how to generate atom-photon entangled coherent states and
entangled states between photon (atom) coherent states and atom-(photon-)
macroscopic quantum superposition (MQS) states, and between photon-MQS and
atom-MQS states.Comment: 9 pages, 1 figur
Functional diversity of chemokines and chemokine receptors in response to viral infection of the central nervous system.
Encounters with neurotropic viruses result in varied outcomes ranging from encephalitis, paralytic poliomyelitis or other serious consequences to relatively benign infection. One of the principal factors that control the outcome of infection is the localized tissue response and subsequent immune response directed against the invading toxic agent. It is the role of the immune system to contain and control the spread of virus infection in the central nervous system (CNS), and paradoxically, this response may also be pathologic. Chemokines are potent proinflammatory molecules whose expression within virally infected tissues is often associated with protection and/or pathology which correlates with migration and accumulation of immune cells. Indeed, studies with a neurotropic murine coronavirus, mouse hepatitis virus (MHV), have provided important insight into the functional roles of chemokines and chemokine receptors in participating in various aspects of host defense as well as disease development within the CNS. This chapter will highlight recent discoveries that have provided insight into the diverse biologic roles of chemokines and their receptors in coordinating immune responses following viral infection of the CNS
Technology and Sociomaterial Performation
Part 1: IS/IT Implementation and AppropriationInternational audienceOrganizational researchers have acknowledged that understanding the relationship between technology and organization is crucial to understanding modern organizing and organizational change [1]. There has been a significant amount of debate concerning the theoretical foundation of this relationship. Our research draws and extends Deleuze and DeLandaâs work on assemblages and Callonâs concept of performation to investigate how different sociomaterial practices are changed and stabilized after the implementation of new technology. Our findings from an in-depth study of two ambulatory clinics within a hospital system indicate that âperform-ingâ of constituting, counter-performing, calibrating, and stratifying explained the process of sociomaterial change and that this process is governed by an overarching principle of âperformative exigencyâ. Future studies on sociomateriality and change may benefit from a deeper understanding of how sociomaterial assemblages are rendered performative
Demonstration of a novel technique to measure two-photon exchange effects in elastic scattering
The discrepancy between proton electromagnetic form factors extracted using
unpolarized and polarized scattering data is believed to be a consequence of
two-photon exchange (TPE) effects. However, the calculations of TPE corrections
have significant model dependence, and there is limited direct experimental
evidence for such corrections. We present the results of a new experimental
technique for making direct comparisons, which has the potential to
make precise measurements over a broad range in and scattering angles. We
use the Jefferson Lab electron beam and the Hall B photon tagger to generate a
clean but untagged photon beam. The photon beam impinges on a converter foil to
generate a mixed beam of electrons, positrons, and photons. A chicane is used
to separate and recombine the electron and positron beams while the photon beam
is stopped by a photon blocker. This provides a combined electron and positron
beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen
target. The large acceptance CLAS detector is used to identify and reconstruct
elastic scattering events, determining both the initial lepton energy and the
sign of the scattered lepton. The data were collected in two days with a
primary electron beam energy of only 3.3 GeV, limiting the data from this run
to smaller values of and scattering angle. Nonetheless, this measurement
yields a data sample for with statistics comparable to those of the
best previous measurements. We have shown that we can cleanly identify elastic
scattering events and correct for the difference in acceptance for electron and
positron scattering. The final ratio of positron to electron scattering:
for GeV and
- âŠ